Física

Electrodinámica: Experiencias de Faraday. Flujo del campo magnético. Ley de Faraday-Henry. Producción de corriente alterna. El alternador. La dinamo. Fuerza electromotriz sinusoidal.

INDUCCION ELECTROMAGNETICA

La inducción electromagnética es la producción de corrientes eléctricas por campos magnéticos variables con el tiempo. El descubrimiento por Faraday y Henry de este fenómeno introdujo una cierta simetría en el mundo del electromagnetismo. James Clerk Maxwell consiguió reunir en una sola teoría los conocimientos básicos sobre la electricidad y el magnetismo. Su teoría electromagnética predijo, antes de ser observadas experimentalmente, la existencia de ondas electromagnéticas. Heinrich Rudolf Hertz comprobó su existencia e inició para la humanidad la era de las telecomunicaciones.

El descubrimiento, debido a Hans Christian Oersted, de que una corriente eléctrica produce un campo magnético estimuló la imaginación de los físicos de la época y multiplicó el número de experimentos en busca de relaciones nuevas entre la electricidad y el magnetismo. En ese ambiente científico pronto surgiría la idea inversa de producir corrientes eléctricas mediante campos magnéticos. Algunos físicos famosos y otros menos conocidos estuvieron cerca de demostrar experimentalmente que también la naturaleza apostaba por tan atractiva idea. Pero fue Faraday el primero en precisar en qué condiciones podía ser observado semejante fenómeno. A las corrientes eléctricas producidas mediante campos magnéticos Michael Faraday las llamó corrientes inducidas. Desde entonces al fenómeno consistente en generar campos eléctricos a partir de campos magnéticos variables se denomina inducción electromagnética.

La inducción electromagnética constituye una pieza destacada en ese sistema de relaciones mutuas entre electricidad y magnetismo que se conoce con el nombre de electromagnetismo.Pero, además, se han desarrollado un sin número de aplicaciones prácticas de este fenómeno físico. El transformador que se emplea para conectar una calculadora a la red, la dinamo de una bicicleta o el alternador de una gran central hidroeléctrica son sólo algunos ejemplos que muestran la deuda que la sociedad actual tiene contraída con ese modesto encuadernador convertido, más tarde, en físico experimental que fue Faraday.

Las experiencias de Faraday

Las experiencias que llevaron a Faraday al descubrimiento de la inducción electromagnética pueden ser agrupadas en dos categorías: experiencias con corrientes y experiencias con imanes. En primer lugar preparó dos solenoides, uno arrollado sobre el otro, pero aislados eléctricamente entre sí. Uno de ellos lo conectó a una pila y el otro a un galvanómetro y observó cómo cuando accionaba el interruptor del primer circuito la aguja del galvanómetro del segundo circuito se desplazaba, volviendo a cero tras unos instantes. Sólo al abrir y al cerrar el interruptor el galvanómetro detectaba el paso de una corriente que desaparecía con el tiempo. Además, la aguja se desplazaba en sentidos opuestos en uno y otro caso.

En el segundo grupo de experiencias Faraday utilizó un imán recto y una bobina conectada a un galvanómetro. Al introducir bruscamente el imán en la bobina observó una desviación en la aguja, desviación que desaparecía si el imán permanecía inmóvil en el interior de la bobina. Cuando el imán era retirado la aguja del galvanómetro se desplazaba de nuevo, pero esta vez en sentido contrario. Cuando repetía todo el proceso completo la aguja oscilaba de uno a otro lado y su desplazamiento era tanto mayor cuanto más rápido era el movimiento del imán entrando y saliendo en el interior de la bobina. Lo mismo sucedía cuando mantenía quieto el imán y movía la bobina sobre él.

La representación del campo magnético en forma de líneas de fuerza permitió a Faraday encontrar una explicación intuitiva para este tipo de fenómenos. Para que se produjera una corriente inducida en la bobina era necesario que las líneas de fuerza producidas por el imán fueran cortadas por el hilo conductor de la bobina como consecuencia del movimiento de uno u otro cuerpo. En el primer grupo de experiencias, las líneas de fuerza, al aparecer y desaparecer junto con la corriente debida a la pila, producían el mismo tipo de efectos. Las experiencias anteriores a las de Faraday, al no tener en cuenta los aspectos dinámicos, o de cambio con el tiempo, de esta clase de fenómenos, no pudieron detectar este tipo de corrientes que aparecen en un circuito eléctrico sin que exista dentro del propio circuito ninguna pila que las genere.

FLUJO MAGNETICO

La representación de la influencia magnética de un imán o de una corriente eléctrica en el espacio que les rodea mediante líneas de fuerza fue ideada por Faraday y aplicada en la interpretación de la mayor parte de sus experimentos sobre electromagnetismo. Mediante este tipo de imágenes Faraday compensaba su escasa preparación matemática, apoyándose así su enorme habilidad gráfica y su no inferior intuición científica. La noción de flujo magnético recoge esa tradición iniciada por Faraday de representar los campos mediante líneas de fuerza, pero añade, además, un significado matemático.

Cuando se observa, con la ayuda de limaduras de hierro, el campo magnético creado por un imán recto, se aprecia que, en los polos, las líneas de fuerza están más próximas y que se separan al alejarse de ellos. Dado que la intensidad del campo magnético B disminuye con la distancia a los polos, parece razonable relacionar ambos hechos y establecer por convenio una proporcionalidad directa entre la intensidad del campo B y la cantidad de líneas de fuerza que atraviesan una superficie de referencia unidad. Cuanto más apretadas están las líneas en una región, tanto más intenso es el campo en dicha región.

El número de líneas de fuerza del campo b que atraviesa una superficie unidad depende de cómo esté orientada tal superficie con respectó a la dirección de aquéllas. Así, para un conjunto de líneas de fuerza dado, el número de puntos de intersección o de corte con la superficie unidad será máximo para una orientación perpendicular y nulo para una orientación paralela. El número de líneas de fuerza del campo b que atraviesa perpendicularmente una superficie constituye entonces una forma de expresar el valor de la intensidad de dicho campo.

Se define el flujo del campo magnético b a través de una superficie, y se representa por la letra griega Φ, como el número total de líneas de fuerza que atraviesan tal superficie. En términos matemáticos, para un campo magnético constante y una superficie plana de área S,el flujo magnético se expresa en la forma:

Φ = B.S.cos φ(12.1)

siendo φ el ángulo que forman las líneas de fuerza (vector b) con la perpendicular a la superficie. Dicha ecuación recoge, mediante el cos φ, el hecho de que el flujo varíe con la orientación de la superficie respecto del campo b y también que su valor dependa del área S de la superficie atravesada. Para φ = 0° (intersección perpendicular) el flujo es máximo e igual a B.S; para φ = 90° (intersección paralela) el flujo es nulo.

La idea de flujo se corresponde entonces con la de « cantidad » de campo magnético que atraviesa una superficie determinada. En el Sistema Internacional se expresa en wéber(Wb). Un wéber es el flujo magnético que, al atravesar un circuito de una sola espira produce en la misma una fuerza electromotriz de 1 volt si se anula dicho flujo en 1 segundo por crecimiento uniforme.

La ley de Faraday-Henry

Independientemente de Faraday, Joseph Henry, en los Estados Unidos, había observado que un campo magnético variable produce en un circuito próximo una corriente eléctrica. Los resultados concordantes de las experiencias de ambos físicos pueden resumirse en un enunciado que se conoce como ley de Faraday-Henry:

La fuerza electromotriz inducida en un circuito es proporcional a la rapidez con la que varía el flujo magnético que lo atraviesa. O en forma matemática:

ε = - ΔΦ/Δt(12.2)

siendo ε la fuerza electromotriz inducida y ΔΦ la variación de flujo magnético que se produce en el intervalo de tiempo Δ t. De acuerdo con esta ecuación, la magnitud de f.e.m. inducida coincide con lo que varía el flujo magnético por unidad de tiempo. La presencia de la fuerza electromotriz ε en la ley de Faraday-Henry en lugar de la intensidad de corriente (ambas son proporcionales entre sí), resalta una característica de la inducción, a saber, su capacidad para sustituir a un generador, es decir, para producir los mismos efectos que éste en un circuito eléctrico. Por su parte, el signo negativo recoge el hecho, observado experimentalmente por Faraday y Henry, de que aumentos (ΔΦ > 0) y disminuciones (ΔΦ< 0) de flujo magnético producen corrientes inducidas de sentidos opuestos.

Si no hay variación con el tiempo del flujo magnético que atraviesa un circuito, el fenómeno de la inducción electromagnética no se presenta. Tal circunstancia explica los fracasos de aquellos físicos contemporáneos de Faraday que pretendieron conseguir corrientes inducidas en situaciones estáticas, o de reposo, del circuito respecto del imán o viceversa. Cuando la ley de Faraday-Henry se aplica a una bobina formada por N espiras iguales toma la forma

ε = - N.ΔΦ/Δt(12.3)

siendo ΔΦ/Δt la variación del flujo magnético por unidad de tiempo para una sola espira en la bobina.

El sentido de las corrientes inducidas

Aunque la ley de Faraday-Henry, a través de su signo negativo, establece una diferencia entre las corrientes inducidas por un aumento del flujo magnético y las que resultan de una disminución de dicha magnitud, no explica este fenómeno. Lenz (1904-1965), un físico alemán que investigó el electromagnetismo en Rusia al mismo tiempo que Faraday y Henry, propuso la siguiente explicación del sentido de circulación de las corrientes inducidas que se conoce como ley de Lenz:

Las corrientes que se inducen en un circuito se producen en un sentido tal que con sus efectos magnéticos tienden a oponerse a la causa que las originó.

Así, cuando el polo norte de un imán se aproxima a una espira, la corriente inducida circulará en un sentido tal que la cara enfrentada al polo norte del imán sea también Norte, con lo que ejercerá una acción magnética repulsiva sobre el imán, la cual es preciso vencer para que se siga manteniendo el fenómeno de la inducción. Inversamente, si el polo norte del imán se aleja de la espira, la corriente inducida ha de ser tal que genere un polo Sur que se oponga a la separación de ambos. Sólo manteniendo el movimiento relativo entre espira e imán persistirán las corrientes inducidas, de modo que si se detiene el proceso de acercamiento o de separación cesarían aquéllas y, por tanto, la fuerza magnética entre el imán y la espira desaparecería.

La ley de Lenz, que explica el sentido de las corrientes inducidas, puede ser a su vez explicada por un principio más general, el principio de la conservación de la energía. La producción de una corriente eléctrica requiere un consumo de energía y la acción de una fuerza desplazando su punto de aplicación supone la realización de un trabajo. En los fenómenos de inducción electromagnética es el trabajo realizado en contra de las fuerzas magnéticas que aparecen entre espira e imán el que suministra la energía necesaria para mantener la corriente inducida. Si no hay desplazamiento, el trabajo es nulo, no se transfiere energía al sistema y las corrientes inducidas no pueden aparecer. Análogamente, si éstas no se opusieran a la acción magnética del imán, no habría trabajo exterior, ni por tanto cesión de energía al sistema.

Ejemplo de la ley de Faraday-Henry y del concepto de flujo magnético: Una espira circular de 20 cm de diámetro gira en un campo magnético uniforme de 5 T de intensidad a razón de 120 vueltas por minuto. Determinar: a) El flujo magnético que atraviesa la espira cuando su plano es perpendicular al campo y cuando forma un ángulo de 30° con la dirección del campo magnético. b) El valor de la f.e.m. media inducida en la espira cuando pasa de la primera a la segunda posición.

a) la expresión del flujo que atraviesa una espira circular en un campo magnético uniforme viene dada por.

Φ = B.S.cos φ = B.π.R².cos φ

siendo B la intensidad del campo magnético, S el área limitada por la espira, R su radio y φ el ángulo que forma la perpendicular al plano de la espira con la dirección del campo. En la primera posición el ángulo φ 1 = 0° y por lo tanto:

Φ 1 = 5.π.0,2².cos 0° = 0,2.π.Wb

En la segunda posición el ángulo φ 2 = 90° - 30° = 60° y entonces:

Φ 2 = 5.π.0,2².cos 60° = 0,1.π.Wb

b) De acuerdo con la ley de Faraday-Henry, la f.e.m. media inducida en una espira en un intervalo de tiempo Δ t viene dada por:

ε = - ΔΦ/Δt = -(Φ 2 - Φ 1)/Δt

siendo Δ t el intervalo de tiempo que transcurre entre una y otra posición. Dado que el movimiento de rotación es uniforme, se cumple la relación:

ω = ΔΦ/Δt⇒ Δt = ΔΦ/ ω

que permite el cálculo de Δ t.

como ω = 120 RPM = 120.2.π /60 s = 2.π /s, y ΔΦ = Φ 2 - Φ 1 = 60° - 0° = 60° = π /3, resulta:

Δt = (π /3)/(4.π) = s/12

Sustituyendo el valor de ΔΦ y de Δ t en la ley de Faraday-Henry resulta finalmente:

ε = -(0,1.π - 0,2.π).12 = 0,1.π.12 = 1,2.π

CORRIENTES INDUCIDAS

Producción de una corriente alterna

La corriente alterna se caracteriza porque su sentido cambia alternativamente con el tiempo. Ello es debido a que el generador que la produce invierte periódicamente sus dos polos eléctricos, convirtiendo el positivo en negativo y viceversa, muchas veces por segundo. La ley de Faraday-Henry establece que se induce una fuerza electromotriz (f.e.m.) ε en un circuito eléctrico siempre que varíe el flujo magnético Φ que lo atraviesa. Pero de acuerdo con la definición de flujo magnético (ecuación 12.1), éste puede variar porque varíe el área S limitada por el conductor, porque varíe la intensidad del campo magnético B o porque varíe la orientación entre ambos dada por el ángulo φ.

En las primeras experiencias de Faraday las corrientes inducidas se conseguían variando el campo magnético B; no obstante, es posible provocar el fenómeno de la inducción sin desplazar el imán ni modificar la corriente que pasa por la bobina,haciendo girar ésta en torno a un eje dentro del campo magnético debido a un imán. En tal caso el flujo magnético varía porque varía el ángulo φ . Utilizando el tipo de razonamiento de Faraday, podría decirse que la bobina al rotar corta las líneas de fuerza del campo magnético del imán y ello da lugar a la corriente inducida. En una bobina de una sola espira la fuerza electromotriz que se induce durante un cuarto de vuelta al girar la bobina desde la posición paralela (φ = 90°) a la posición perpendicular (φ = 0°) puede calcularse a partir de la ley de Faraday-Henry, en la forma:

ε = - ΔΦ/Δt = -B.S/t

Como el flujo Φ inicial es cero (cos 90° = 0) y el final es B.S (cos 0° = 1), la variación ΔΦ o diferencia entre ambos es igual al producto B.S. Considerando el instante inicial igual a cero, resulta Δ t = t.0 = t, siendo t el tiempo correspondiente al instante final después de un cuarto de vuelta. De este modo se obtiene el resultado anterior.

Si se hace rotar la espira uniformemente, ese movimiento de rotación periódico da lugar a una variación también periódica del flujo magnético o, en otros términos, la cantidad de líneas de fuerza que es cortada por la espira en cada segundo toma valores iguales a intervalos iguales de tiempo. La f.e.m. inducida en la espira varía entonces periódicamente con la orientación y con el tiempo, pasando de ser positiva a ser negativa, y viceversa, de una forma alternativa. Se ha generado una f.e.m. alterna cuya representación gráfica, en función del tiempo, tiene la forma de una línea sinusoidal.

El alternador

Es el nombre que recibe el generador de corriente alterna. Se basa en la producción de una fuerza electromotriz alterna mediante el fenómeno de inducción electromagnética. El imán que genera el campo magnético se denomina inductor y la bobina en la que se induce la fuerza electromotriz recibe el nombre de inducido. Los dos extremos de hilo conductor del inducido se conectan a unos anillos colectores que giran junto con la bobina. Las escobillas, que suelen ser de grafito, están en contacto permanente, mediante fricción, con los anillos colectores y transmiten la tensión eléctrica producida a los bornes del generador en donde puede conectarse a un circuito exterior. Por lo general, la bobina del inducido se monta sobre un núcleo de hierro. La elevada permeabilidad magnética de este material hace que el campo magnético que atraviesa la bobina aumente; ello significa que las líneas de fuerza se aproximan entre sí aumentando el flujo magnético y, consiguientemente, el valor máximo de la f.e.m. inducida. Un efecto semejante se consigue aumentando el número de espiras del inducido.

En los grandes alternadores, el inducido está fijo y es el inductor el que se mueve, de modo que en este caso no son necesarios los anillos colectores ni las escobillas. Aunque la inducción electromagnética depende del movimiento relativo entre el campo magnético y el conductor, con este procedimiento se consigue salvar algunos inconvenientes relacionados con el paso de corrientes elevadas por el colector y las escobillas. Por lo general, en los alternadores comerciales el campo magnético es producido por un electroimán y no por un imán natural; en tales casos el inductor se denomina también excitador, pues es una corriente eléctrica la que excita la producción del campo magnético externo. Los alternadores son los elementos esenciales en las centrales eléctricas. En ellos se genera una muy alta tensión eléctrica que se transporta a través de una red de tendidos eléctricos y es transformada en estaciones intermedias para llegar finalmente hasta los enchufes domésticos con un valor eficaz de 220 V. La frecuencia de oscilación de esta tensión alterna es en Europa de 50 Hz, lo que equivale a 50 ciclos por segundo.

La dinamo

Puede ser considerada como una modificación del alternador que permite generar corrientes continuas. Para lograr que la corriente que circula por la bobina tenga un único sentido, se han de invertir las conexiones justo en el instante en el que la f.e.m. cambia de signo. Ello se consigue sustituyendo los anillos colectores por un cilindro metálico compuesto de dos mitades aisladas entre sí o delgas y conectadas cada una a un extremo de hilo conductor de la bobina. Esa pieza se denomina conmutador porque cambia o conmuta en cada media vuelta la polaridad del generador, de tal forma que la tensión que llega a los bornes a través de las escobillas tiene siempre el mismo signo y al conectarlo al circuito exterior produce una corriente continua.

En las dinamos sencillas la tensión producida, aunque tiene siempre el mismo signo, no mantiene un mismo valor, sino que varía de una forma ondulada o pulsante. Sin embargo,es posible conseguir una f.e.m. prácticamente constante introduciendo un número suficiente de bobinas, dividiendo otras tantas veces el anillo colector y añadiendo los correspondientes pares de escobillas. Por este procedimiento la ondulación de la tensión, que es pronunciada en una dinamo sencilla, se reduce a un ligero rizado despreciable.

Las bicicletas utilizan la dinamo para producir luz a partir del movimiento. Tratándose por lo general de una dinamo sencilla, puede observarse cómo a baja velocidad la intensidad luminosa aumenta y disminuye alternativamente a un ritmo que depende de la velocidad. Cuando ésta es suficiente, la rapidez de la oscilación unida a la inercia del sistema hace que la intensidad luminosa de la lámpara se mantenga prácticamente constante. Este efecto es semejante al que se consigue al aumentar el número de bobinas, de delgas y de escobillas. La dinamo es una máquina reversible que puede actuar como motor si se le aplica a través de las escobillas una corriente continua de intensidad conveniente. En el primer caso, funcionando como dinamo, la máquina transforma energía mecánica en energía eléctrica; en el segundo transforma energía eléctrica en movimiento.

La fuerza electromotriz sinusoidal

La ley de Faraday expresada en la forma de ε = - ΔΦ/Δt representa, en sentido estricto, la f.e.m. media que se induce en el intervalo t. Si dicho intervalo se reduce a un instante, la expresión anterior se convierte en:

ε = - d Φ /dt

en donde el símbolo d/dt representa la derivada respecto del tiempo. Si la espira gira con una velocidad angular ω constante el ángulo φ variará con t en la forma φ = ω t, como en un movimiento circular uniforme, la expresión del flujo en función del tiempo puede escribirse entonces como:

Φ = B.S.cos φ = B.S.cos ω t

y el cálculo de la f.e.m. instantánea se reduce entonces a un ejercicio de derivación de la función coseno, pues B.S es una cantidad constante:

ε = - d (B.S.cos ω t)/dt = - B.S.d(cos ω t)/dt

Teniendo en cuenta que (cos ω t)/dt = - ω .sen ω t

resulta finalmente:

ε = - B.S.(- ω .sen ω t) = B.S. ω .sen ω t = ε 0.sen ω t

siendo ε 0 = B S el valor máximo de la f.e.m. sinusoidal inducida en la espira. Si se tratara de una bobina con N espiras se obtendría para ε 0, siguiendo un procedimiento análogo, el valor ε 0 = N B S ω . La fuerza electromotriz inducida varía con el tiempo, tomando valores positivos y negativos de un modo alternativo,como lo hace la función seno. Su valor máximo depende de la intensidad del campo magnético del imán, de la superficie de las espiras, del número de ellas y de la velocidad con la que rote la bobina dentro del campo magnético. Al aplicarla a un circuito eléctrico daría lugar a una corriente alterna.

Ejemplo de la producción de la f.e.m. sinusoidal: La fuerza electromotriz inducida en una bobina que rote en un campo magnético uniforme varía con el tiempo de una forma sinusoidal y su valor máximo depende del número de espiras, de la intensidad del campo, de la sección de la bobina y de la velocidad de rotación. Una bobina plana está compuesta de 1 000 espiras rectangulares arrolladas sobre un cuadro móvil. El área media de las diferentes espiras es de 20/ π, cm². Se le hace girar al conjunto a una velocidad de 3 000 r.p.m. en un campo magnético uniforme de intensidad B = 0,5 T tal como se indica en la figura adjunta. Calcular: a) la f.e.m. máxima inducida en la bobina. b) la expresión de la f.e.m. instantánea.

La expresión de la fuerza electromotriz sinusoidal inducida en una espira viene dada por:

ε = B.S. ω .sen ω t

Si se trata de N espiras se tiene:

ε = N.B.S. ω .sen ω t

siendo N.B..S ω = ε 0 el valor máximo de la f.e.m. inducida.

a) Dado que ω ha de expresarse en rad/s resulta:

ω = 3000 RPM = 3000.2.π /60 s = 100.π / s

Análogamente:

S = 20 cm²/ π = 20.10-4 m²/ π

Por tanto el valor de la f.e.m. máxima será:

ε 0 = N.B.S. ω = 1000.0,5.100.π.20.10-4 m²/ π = 100 V

b) la f.e.m. instantánea como función del tiempo resulta ser:

ε (t) = ε 0.sen ω t = 100.sen (100 π t)

Editor: Fisicanet ®

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet".

Por favor, “copia y pega” bien el siguiente enlace:

¡Gracias!

Fisicanet: Matemática, física, química, biología, historia, cultura y tecnología
TuGuitarra: Guitarras eléctricas. Guitarristas famosos. Video de la semana. Biografías y Tablaturas.
Fútbol a Mil: Información de fútbol - tabla de posiciones - clubes - videos - noticias - estadísticas
Que Recetas: Recetas de cocina fáciles de hacer, sencillas y rápidas, también para microondas, postres, tartas, arroz, carnes, pescados y mariscos, pastas, tortas