Física

Estática de los fluidos: Hidrostática. Densidad de un sólido. Picnómetro.

DETERMINACION DE DENSIDADES MEDIANTE EL PICNOMETRO

A través de esta práctica pretendemos calcular la densidad de un sólido, en primer lugar, y en segundo lugar la densidad de un líquido.

a) Determinación de la densidad de un sólido:

Procederemos a limpiar el picnómetro con agua destilada y a secarlo perfectamente; seguidamente lo llenaremos de agua destilada hasta la señal de enrase. Pesaremos a continuación el sólido problema y obtenemos un valor de M = 0,98 ± 0,01 g., después pesamos el picnómetro lleno de agua junto con el sólido problema; arrojando un valor de M I = 46,55 ± 0,01 g. Por último pesamos el picnómetro pero esta vez con el sólido problema dentro y enrasando de nuevo, siendo el peso de M II= 46,44 ± 0,01 g.

A través de la diferencia de estas dos últimas pesadas obtenemos el valor del agua desalojada:

M0 = M I - M II

M0 = 46,55 - 46,44=0,14 ± 0,02 g.

ΔM0 = ΔM I + ΔM II = ± 0,02

Una vez obtenido el valor del agua desalojada observamos la temperatura existente durante el desarrollo de la práctica para poder saber el valor de la densidad del agua. La temperatura alcanza un valor de 22°C y a través de las tablas la densidad del agua es de ρ a = 0,99780 g/cm³.

Sustituyendo en la siguiente expresión obtenemos la densidad del sólido problema.

ρ = M. ρ a/M0

ρ = (0,98 ± 0,01.0,99780)/(0,14 ± 0,02) = 6,98 ± 1 g/cm³

ε (M) = 0,01/0,98 = ± 0,01

ε (M0) = 0,02/0,14 = ± 0,14

ε (ρ) = ε (M) + ε (M0) = ± 0,15

|ρ| = 6,98

Δρ = |ρ|.ε(ρ) = 0,15.6,98 = ±1

b) Determinación de la densidad de un líquido:

Procedemos en primer lugar a limpiar y secar perfectamente el picnómetro. La primera medición corresponde al picnómetro limpio y seco, la cual llamaremos
M1 = 20,13 ± 0,01g. Seguidamente llenamos el picnómetro de agua y procedemos a pesarlo, a esta medida la llamaremos
M2 = 45,61 ± 0,01 g. Por último pesamos el picnómetro con el líquido problema dentro de él, que llamaremos
M3 = 47,30 ± 0,01 g.

Para determinar la densidad del líquido problema deducimos la masa de agua contenida en el picnómetro:
M2-M1, que es de 25,48 ± 0,02 g., También determinamos la masa del líquido problema contenida en el picnómetro:
M3-M1 =27.17±0,02g.

A través de la siguiente ecuación calculamos la densidad del líquido problema.

ρ = (M3 - M1)/(M2 - M1). ρ a

ρ = (27,17 ± 0,02)/(25,48 ± 0,02).0,99780 = 1,06 ± 0,0016 g/cm³

ε (M3 - M1) = 0,02/27,17 = ± 0,0007

ε (M2 - M1) = 0,02/24,48 = ± 0,0008

ε (ρ) = ε (M3 - M1) + ε (M2 - M1) = ± 0,0015

Δρ = |ρ|.ε(ρ) = 0,0015.1,06 = ± 0,0016

CUESTIONES:

1. a). Para obtener la expresión ρ = (M/M0). ρ a partimos de la expresión de la densidad de un cuerpo y multiplicamos y dividimos por la densidad del agua:

ρ = M/V

ρ a = M0/V

ρ = (M/V).(ρ aa) = (M/V).[(M0/V)/(M0/V)] =
= (M.M0.V)/(V.V.M0) = [(M.V)/(V.M0)].ρ a =
= (M/M0).ρ a

b). La siguiente expresión que tenemos que deducir es
ρ = (M3 - M1)/(M2 - M1). ρ a y partimos al igual que en el caso 1 de la fórmula densidad de un cuerpo y de la densidad del agua. Hacemos el mismo desarrollo y llegamos también a la misma ecuación, pero en este caso
M = M3 - M1 y M0 = M2 - M1 y sustituyendo en la expresión ρ = (M/M0). ρ a nos da como resultado la ecuación que queríamos demostrar.

2. Deducir una expresión que relaciones la densidad de un cuerpo con la temperatura y el coeficiente de dilatación del mismo:

ρ = M/V(t); V(t) = V0 + V0.α.Δt

En esta expresión vemos como la densidad es igual a la masa dividida por el volumen con respecto del tiempo. Este volumen corresponde al volumen que tenemos inicialmente más el volumen que aumenta con relación al coeficiente de dilatación y al incremento de temperatura (V0.α.Δt). Despejando el coeficiente de dilatación nos queda:

α = (1/V).(∂V/∂t)

Finalmente nos quedará:

Picnómetro

Siendo ρ 0 = M/V0 la densidad del cuerpo a 0 grados centígrados.

3. Para determinar mediante el picnómetro la densidad de una sal se utiliza keroseno y se encuentra que 20 g. de la sal desplazan 7,4 g. de keroseno. Calcule la densidad de la sal,sabiendo que la del keroseno es 0,83 g/cm³.

En este caso basta con utilizar la fórmula ρ 5 = M5/Mk. ρ k; donde Ms es la masa de la sal, Mk es la masa del keroseno y ρ c25 es la densidad del keroseno; por tanto:

ρ 3 = (20/7,4).0,83 = 2,24 g/cm³

Editor: Fisicanet ®

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet".

Por favor, “copia y pega” bien el siguiente enlace:

¡Gracias!

Fisicanet: Matemática, física, química, biología, historia, cultura y tecnología
TuGuitarra: Guitarras eléctricas. Guitarristas famosos. Video de la semana. Biografías y Tablaturas.
Fútbol a Mil: Información de fútbol - tabla de posiciones - clubes - videos - noticias - estadísticas
Que Recetas: Recetas de cocina fáciles de hacer, sencillas y rápidas, también para microondas, postres, tartas, arroz, carnes, pescados y mariscos, pastas, tortas