Visitando el mundo celular

La mayoría de las células eucarióticas miden entre 10 y 30 micrómetros de diámetro, entre 3 y 10 veces menos que el poder de resolución (medida de la capacidad para distinguir un objeto de otro; es la distancia mínima que debe haber entre dos objetos para que sean percibidos como objetos separados) del ojo humano; de aproximadamente ⅒ milímetros o 100 micrómetros. Las células procarióticas son aun más pequeñas. Para distinguir células individuales, y con mayor razón las estructuras que las componen, debemos usar instrumentos que suministren una mejor resolución. La mayor parte del conocimiento actual acerca de la estructura celular se obtuvo con la ayuda de tres tipos diferentes de instrumentos: el microscopio óptico o fotónico, el microscopio electrónico de transmisión y el microscopio electrónico de barrido.

Las lentes que focalizan la luz en el microscopio óptico son de vidrio o de cuarzo; las de los microscopios electrónicos son electroimanes. Tanto en el microscopio óptico como en el electrónico de transmisión, el rayo de iluminación atraviesa la muestra. En el microscopio electrónico de barrido, se refleja sobre la superficie de la muestra.

Comparación entre diversos tipos de microscopios
Comparación entre diversos tipos de microscopios.

Los mejores microscopios ópticos tienen un poder de resolución de 0,2 micrómetros, o 200 nanómetros, aproximadamente 500 veces mayor que el del ojo. Con el microscopio óptico podemos distinguir las estructuras más grandes dentro de las células eucarióticas y también células procarióticas individuales.

Sin embargo, no podemos observar la estructura interna de las células procarióticas ni distinguir entre las estructuras más finas de las células eucarióticas.

Con el microscopio electrónico de transmisión, el poder de resolución aumentó cerca de 1.000 veces respecto del microscopio óptico. Esto se logra utilizando "iluminación" de una longitud de onda mucho más corta, que consiste en haces de electrones en lugar de rayos de luz. Las áreas del espécimen que permiten la transmisión de más electrones ("regiones electrotransparentes") aparecen brillantes y las áreas que dispersan los electrones ("regiones electroopacas") son oscuras. La microscopia electrónica de transmisión suministra en la actualidad un poder de resolución de aproximadamente 0,2 nanómetros, unas 500 mil veces mayor que el del ojo humano. Esa medida equivale más o menos al doble del diámetro de un átomo de hidrógeno.

El poder de resolución del microscopio electrónico de barrido sólo es de aproximadamente 10 nanómetros; en la microscopia electrónica de barrido los electrones que se registran provienen de la superficie del espécimen y no de un corte a través de éste. Las variaciones en la superficie del espécimen afectan el patrón con que se dispersan los electrones; los huecos y fisuras aparecen oscuros y las protuberancias y crestas son claras.

Se obtienen así representaciones tridimensionales vívidas de las células y de las estructuras celulares, lo cual compensa, en parte, su resolución limitada.

Para ser observadas, las muestras deben ser sometidas a un tratamiento previo. Tanto en el microscopio óptico como en el microscopio electrónico de transmisión, la formación de una imagen con un contraste perceptible exige que diferentes partes de la célula difieran en su transparencia al haz de iluminación, ya sean rayos de luz o electrones. Las partes del espécimen que permiten el paso de la luz o de los electrones aparecen brillantes, mientras que las partes que bloquean el paso del haz de iluminación aparecen oscuras. En el microscopio electrónico de barrido la intensidad de la señal de electrones dispersados por la muestra depende de la inclinación local de la superficie de ésta con respecto al haz. Así, un borde agudo o saliente genera una mayor dispersión de electrones hacia el detector y aparece más claro que una fisura o un hueco. Este hecho posibilita interpretar una micrografía electrónica de manera análoga a una micrografía óptica.

Las células vivas y sus partes componentes son, casi completamente transparentes a la luz porque el 70 % del peso de las células, aproximadamente, corresponde al agua, a través de la cual la luz pasa fácilmente. Para crear suficiente contraste cuando se usa el microscopio óptico, las células deben ser tratadas con colorantes u otras sustancias que se adhieran diferencialmente a componentes subcelulares específicos, o reaccionen con ellos, produciendo regiones de opacidad diferente. Para el microscopio electrónico los especímenes se tratan por lo general con compuestos de metales pesados.

Los especímenes que serán estudiados usando un microscopio óptico convencional o un microscopio electrónico de transmisión deben ser tratados es decir, fijados, teñidos, deshidratados (para el microscopio electrónico), incluidos y seccionados en cortes finos. Las réplicas de las superficies generalmente se preparan cuando se las quiere estudiar con el microscopio electrónico de barrido.

Para células vivas se utilizan otras técnicas microscopios de contraste de fase y de interferencia diferencial, sistemas ópticos especialmente diseñados que intensifican la escasa interferencia y proporcionan un mayor contraste. La resolución de estos microscopios es limitada, como ocurre en un microscopio óptico común, pero suministran una perspectiva diferente de la célula viva, mostrando aspectos difíciles de detectar con otros sistemas.

Una técnica usada con frecuencia para observar las células vivas es la microscopia de campo oscuro. El haz de iluminación llega a la muestra desde el costado y los sistemas de lentes detectan la luz reflejada por el espécimen, que aparece como un objeto brillante contra un fondo oscuro. Los rasgos de las células que son invisibles en otras microfotografías, a menudo adquieren gran relieve en las de campo oscuro.

Bibliografía:

Autor: Diana Victoria Netto. Ingeniera Agrónoma. Argentina.

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.