Reacciones que capturan energía

La energía lumínica incide sobre pigmentos antena del Fotosistema II, que contiene moléculas de clorofila, a y b. Los electrones son lanzados cuesta arriba desde la molécula reactiva P680 de la clorofila a a un aceptor de electrones primario. Cuando se eliminan los electrones, ellos son reemplazados por electrones de las moléculas de agua, con la producción simultánea de O2 libre y protones (iones H+).

Luego, los electrones pasan cuesta abajo al Fotosistema I a lo largo de una cadena de transportadores de electrones; generando un gradiente de protones que impulsa la síntesis de ATP a partir de ADP, proceso denominado fotofosforilación. La energía lumínica absorbida en los pigmentos antena del Fotosistema I y transferida a la clorofila P700 da como resultado que se lancen electrones hacia otro aceptor primario de electrones. Los electrones eliminados del P700 son reemplazados por electrones del Fotosistema II y estos finalmente son aceptados por el transportador de electrones NADP+. La energía proveniente de ésta secuencia de reacciones está contenida en las moléculas de NADPH y en el ATP formado por fotofosforilación.

Entre éstas se distinguen los pigmentos, los transportadores de electrones, los Fotosistemas I y II y enzimas necesarias, incluyendo las ATP sintetasas. La disposición de estas moléculas en la membrana tilacoidal hace posible la síntesis quimiosmótica del ATP durante la fotofosforilación.

Para generar una molécula de NADPH, deben ser lanzados dos electrones desde el Fotosistema II y dos del Fotosistema I. Se escinden dos moléculas de agua para formar protones y gas oxígeno, poniendo en disponibilidad los dos electrones de reemplazo necesarios para el Fotosistema II. Se regenera una molécula de agua en la formación de ATP.

Esquema de fotosistemas
Esquema de fotosistemas I y II

La energía lumínica atrapada en la molécula reactiva de la clorofila a del Fotosistema II lanza los electrones a un nivel de energía más alto. Estos electrones son reemplazados por electrones de las moléculas de agua, que liberan protones y gas oxígeno.

La fotofosforilación también ocurre como resultado del flujo cíclico de electrones, proceso ciclico en el que no participa el Fotosistema II. Los electrones lanzados desde el P700 en el Fotosistema I no pasan al NADP+, sino que son desviados a la cadena de transporte de electrones que une al Fotosistema II con el Fotosistema I. A medida que fluyen a lo largo de ésta cadena, nuevamente al P700, el ADP se fosforila a ATP.

En un proceso quimiosmótico a medida que los electrones fluyen en la cadena de transporte de electrones desde el Fotosistema II al Fotosistema I, los protones son bombeados desde el estroma al espacio tilacoide, creando un gradiente electroquímico. A medida que los protones fluyen a favor de este gradiente desde el espacio tilacoide nuevamente al estroma, pasando a través de los complejos de ATP sintetasa, se forma ATP. Al igual que la fosforilación oxidativa en las mitocondrias, la fotofosforilación en los cloroplastos es un proceso de acoplamiento quimiosmótico.

Esquema de la cadena de electrones
Esquema de la cadena de electrones

Dispuestas dentro de la membrana tilacoide se encuentran las moléculas y complejos moleculares que participan de las reacciones directamente dependientes de la luz en la fotosíntesis.

En este proceso, los electrones de la molécula reactiva de clorofila a del Fotosistema II son impulsados a niveles energéticos superiores por la luz solar. A medida que descienden por una cadena de transportadores de electrones hacia la molécula reactiva de clorofila a del Fotosistema I, la energía que liberan es empleada para bombear protones (H+). Los protones se bombean desde el estroma al espacio tilacoidal. Esto crea un gradiente electroquímico. Cuando los protones se mueven a favor del gradiente a través del complejo de la ATP sintetasa, desde el espacio tilacoidal al estroma del cloroplasto, el ADP se fosforila a ATP.

Bibliografía:

Autor: Diana Victoria Netto. Ingeniera Agrónoma. Argentina.

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.