Fisicanet ®

Ciencias naturales

Contaminación

Impregnación del aire, el agua o el suelo con productos que afectan a la salud del hombre, la calidad de vida o el funcionamiento natural de los ecosistemas.

Contaminación atmosférica

Contaminación de la atmósfera por residuos o productos secundarios gaseosos, sólidos o líquidos, que pueden poner en peligro la salud del hombre y la salud y bienestar de las plantas y animales, atacar a distintos materiales, reducir la visibilidad o producir olores desagradables. Entre los contaminantes atmosféricos emitidos por fuentes naturales, sólo el radón, un gas radiactivo, es considerado un riesgo importante para la salud. Subproducto de la desintegración radiactiva de minerales de uranio contenidos en ciertos tipos de roca, el radón se filtra en los sótanos de las casas construidas sobre ella. Según recientes estimaciones del gobierno de Estados Unidos, un 20 % de los hogares del país contienen concentraciones de radón suficientemente elevadas como para representar un riesgo de cáncer de pulmón.

Cada año, los países industriales generan miles de millones de toneladas de contaminantes. Los contaminantes atmosféricos más frecuentes y más ampliamente dispersos se describen en la tabla adjunta. El nivel suele expresarse en términos de concentración atmosférica (microgramos de contaminantes por metro cúbico de aire) o, en el caso de los gases, en partes por millón, es decir, el número de moléculas de contaminantes por millón de moléculas de aire. Muchos contaminantes proceden de fuentes fácilmente identificables; el dióxido de azufre, por ejemplo, procede de las centrales energéticas que queman carbón o petróleo. Otros se forman por la acción de la luz solar sobre materiales reactivos previamente emitidos a la atmósfera (los llamados precursores). Por ejemplo, el ozono, un peligroso contaminante que forma parte del smog, se produce por la interacción de hidrocarburos y óxidos de nitrógeno bajo la influencia de la luz solar. El ozono ha producido también graves daños en las cosechas. Por otra parte, el descubrimiento en la década de 1.980 de que algunos contaminantes atmosféricos, como los fluorocarbonos, están produciendo una disminución de la capa de ozono protectora del planeta ha conducido a una supresión paulatina de estos productos.

Meteorología y efectos sobre la salud

La concentración de los contaminantes se reduce al dispersarse estos en la atmósfera, proceso que depende de factores climatológicos como la temperatura, la velocidad del viento, el movimiento de sistemas de altas y bajas presiones y la interacción de éstos con la topografía local, por ejemplo las montañas y valles. La temperatura suele decrecer con la altitud, pero cuando una capa de aire frío se asienta bajo una capa de aire caliente produciendo una inversión térmica, la mezcla atmosférica se retarda y los contaminantes se acumulan cerca del suelo. Las inversiones pueden ser duraderas bajo un sistema estacionario de altas presiones unido a una baja velocidad del viento.

Un período de tan sólo tres días de escasa mezcla atmosférica puede llevar a concentraciones elevadas de productos peligrosos en áreas de alta contaminación y, en casos extremos, producir enfermedades e incluso la muerte. En 1.948 una inversión térmica sobre Donora, Pennsylvania, produjo enfermedades respiratorias en más de 6.000 personas ocasionando la muerte de veinte de ellas. En Londres, la contaminación segó entre 3.500 y 4.000 vidas en 1.952, y otras 700 en 1.962. La liberación de isocianato de metilo a la atmósfera durante una inversión térmica fue la causa del desastre de Bhopal, India, en diciembre de 1.984, que produjo al menos 3.300 muertes y más de 20.000 afectados. Los efectos de la exposición a largo plazo a bajas concentraciones de contaminantes no están bien definidos; no obstante, los grupos de riesgo son los muy jóvenes, los ancianos, los fumadores, los trabajadores expuestos al contacto con materiales tóxicos y quienes padecen enfermedades pulmonares o cardíacas. Otros efectos adversos de la contaminación atmosférica son los daños que pueden sufrir el ganado y las cosechas.

A menudo los primeros efectos perceptibles de la contaminación son de naturaleza estética y no son necesariamente peligrosos. Estos efectos incluyen la disminución de la visibilidad debido a la presencia de diminutas partículas suspendidas en el aire, y los malos olores, como la pestilencia a huevos podridos producida por el sulfuro de hidrógeno que emana de las fábricas de papel y celulosa.

Fuentes y control

La combustión de carbón, petróleo y gasolina es el origen de buena parte de los contaminantes atmosféricos. Más de un 80 % del dióxido de azufre, un 50 % de los óxidos de nitrógeno, y de un 30 a un 40 % de las partículas en suspensión emitidos a la atmósfera en Estados Unidos proceden de las centrales eléctricas que queman combustibles fósiles, las calderas industriales y las calefacciones. Un 80 % del monóxido de carbono y un 40 % de los óxidos de nitrógeno e hidrocarburos emitidos proceden de la combustión de la gasolina y el gasóleo en los motores de los coches y camiones. Otras importantes fuentes de contaminación son la siderurgia y las acerías, las fundiciones de cinc, plomo y cobre, las incineradoras municipales, las refinerías de petróleo, las fábricas de cemento y las fábricas de ácido nítrico y sulfúrico.

Entre los materiales que participan en un proceso químico o de combustión puede haber ya contaminantes (como el plomo de la gasolina), o éstos pueden aparecer como resultado del propio proceso. El monóxido de carbono, por ejemplo, es un producto típico de los motores de explosión. Los métodos de control de la contaminación atmosférica incluyen la eliminación del producto peligroso antes de su uso, la eliminación del contaminante una vez formado, o la alteración del proceso para que no produzca el contaminante o lo haga en cantidades inapreciables. Los contaminantes producidos por los automóviles pueden controlarse consiguiendo una combustión lo más completa posible de la gasolina, haciendo circular de nuevo los gases del depósito, el carburador y el cárter, y convirtiendo los gases de escape en productos inocuos por medio de catalizadores. Las partículas emitidas por las industrias pueden eliminarse por medio de ciclones, precipitadores electrostáticos y filtros. Los gases contaminantes pueden almacenarse en líquidos o sólidos, o incinerarse para producir sustancias inocuas.

Efectos a gran escala

Las altas chimeneas de las industrias no reducen la cantidad de contaminantes, simplemente los emiten a mayor altura, reduciendo así su concentración in situ. Estos contaminantes pueden ser transportados a gran distancia y producir sus efectos adversos en áreas muy alejadas del lugar donde tuvo lugar la emisión. El pH o acidez relativa de muchos lagos de agua dulce de la región se ha visto alterado hasta tal punto que han quedado destruidas poblaciones enteras de peces. En Europa se han observado efectos similares, y así, por ejemplo, Suecia ha visto afectada la capacidad de sustentar peces de muchos de sus lagos. Las emisiones de dióxido de azufre y la subsiguiente formación de ácido sulfúrico pueden ser también responsables del ataque sufrido por las calizas y el mármol a grandes distancias.

El creciente consumo de carbón y petróleo desde finales de la década de 1.940 ha llevado a concentraciones cada vez mayores de dióxido de carbono. El efecto invernadero resultante, que permite la entrada de la energía solar pero reduce la reemisión de rayos infrarrojos al espacio exterior, genera una tendencia al calentamiento que podría afectar al clima global y llevar al deshielo parcial de los casquetes polares. Es concebible que un aumento de la cubierta nubosa o la absorción del dióxido de carbono por los océanos pudieran poner freno al efecto invernadero antes de que se llegara a la fase del deshielo polar. No obstante, los informes publicados en Estados Unidos en la década de 1.980 indican que el efecto invernadero es un hecho y que las naciones del mundo deberían tomar medidas inmediatamente para ponerle solución.

Medidas gubernamentales

En Estados Unidos, el Plan de Gestión de la Calidad del Aire de 1.967 y las enmiendas a la misma constituyen la base legal para el control de la contaminación atmosférica. La Agencia de Protección del Medio Ambiente (EPA) es la principal responsable de que se apliquen los requerimientos de la ley, que especifica que deben establecerse estándares de calidad del aire para las sustancias peligrosas. En la escena internacional, 49 países acordaron proteger la capa de ozono en marzo de 1.985, en una convención auspiciada por las Naciones Unidas. En el Protocolo de Montreal, renegociado en 1.990, se solicita la eliminación progresiva de ciertos clorocarbonos y fluorocarbonos antes del año 2.000 y ofrece ayuda a los países en vías de desarrollo para realizar esta transición.

ContaminantePrincipales fuentesComentarios
Monóxido de carbono (CO)Gases de escape de vehículos de motor; algunos procesos industrialesMáximo permitido: 10 mg/m³ (9 ppm) en 8 hr; 40 mg/m³ en 1 hr (35 ppm)
Dióxido de azufre (SO2)Instalaciones generadoras de calor y electricidad que utilizan petróleo o carbón con contenido sulfuroso; plantas de ácido sulfúricoMáximo permitido: 80 µg/m³ (0,03 ppm) en un año; 365 µg/m³ en 24 hr (0,14 ppm)
Partículas en suspensiónGases de escape de vehículos de motor; procesos industriales; incineración de residuos; generación de calor y electricidad; reacción de gases contaminantes en la atmósferaMáximo permitido: 75 µg/m³ en un año; 260 µg/m³ en 24 hr; compuesto de carbón, nitratos, sulfatos y numerosos metales, como el plomo, el cobre, el hierro y el cinc
Plomo (Pb)Gases de escape de vehículos de motor, fundiciones de plomo; fábricas de bateríasMáximo permitido: 1,5 µg/m³ en 3 meses; la mayor parte del plomo contenido en partículas en suspensión
Óxidos de nitrógeno (NO, NO2)Gases de escape de vehículos de motor; generación de calor y electricidad; ácido nítrico; explosivos; fábricas de fertilizantesMáximo permitido: 100 µg/m³ (0,05 ppm) en un año para el NO2; reacciona con hidrocarburos y luz solar para formar oxidantes fotoquímicos
Oxidantes fotoquímicos (fundamentalmente ozono [O3]; también nitrato peroxiacetílico [PAN] y aldehídos)Se forman en la atmósfera como reacción a los óxidos de nitrógenos, hidrocarburos y luz solarMáximo permitido: 235 µg/m³ (0,12 ppm) en 1 hr
Hidrocarburos no metánicos (incluye etano, etileno, propano, butanos, pentanos, acetileno)Gases de escape de vehículos de motor; evaporación de disolventes; procesos industriales; eliminación de residuos sólidos; combustión de combustiblesReacciona con los óxidos de nitrógeno y la luz solar para formar oxidantes fotoquímicos
Dióxido de carbono (CO2)Todas las fuentes de combustiónPosiblemente perjudicial para la salud en concentraciones superiores a 5.000 ppm en 2-8 hr; los niveles atmosféricos se han incrementado desde unas 280 ppm hace un siglo a más de 350 ppm en la actualidad; probablemente esta tendencia esté contribuyendo a la generación del efecto invernadero

Contaminación del agua

Incorporación al agua de materias extrañas como microorganismos, productos químicos, residuos industriales y de otros tipos, o aguas residuales. Estas materias deterioran la calidad del agua y la hacen inútil para los usos pretendidos.

Principales contaminantes

Los principales contaminantes del agua son los siguientes:

Aguas residuales y otros residuos que demandan oxígeno (en su mayor parte materia orgánica, cuya descomposición produce la desoxigenación del agua).

Agentes infecciosos

Nutrientes vegetales que pueden estimular el crecimiento de las plantas acuáticas. Estas, a su vez, interfieren con los usos a los que se destina el agua y, al descomponerse, agotan el oxígeno disuelto y producen olores desagradables.

Productos químicos, incluyendo los pesticidas, varios productos industriales, las sustancias tensioactivas contenidas en los detergentes, y los productos de la descomposición de otros compuestos orgánicos.

Petróleo, especialmente el procedente de los vertidos accidentales.

Minerales inorgánicos y compuestos químicos.

Sedimentos formados por partículas del suelo y minerales arrastrados por las tormentas y escorrentías desde las tierras de cultivo, los suelos sin protección, las explotaciones mineras, las carreteras y los derribos urbanos.

Sustancias radiactivas procedentes de los residuos producidos por la minería y el refinado del uranio y el torio, las centrales nucleares y el uso industrial, médico y científico de materiales radiactivos.

El calor también puede ser considerado un contaminante cuando el vertido del agua empleada para la refrigeración de las fábricas y las centrales energéticas hace subir la temperatura del agua de la que se abastecen.

Efectos de la contaminación del agua

Los efectos de la contaminación del agua incluyen los que afectan a la salud humana. La presencia de nitratos (sales del ácido nítrico) en el agua potable puede producir una enfermedad infantil que en ocasiones es mortal. El cadmio presente en los fertilizantes derivados del cieno puede ser absorbido por las cosechas; de ser ingerido en cantidad suficiente, el metal puede producir un trastorno diarreico agudo así como lesiones en el hígado y los riñones. Hace tiempo que se conoce o se sospecha de la peligrosidad de sustancias inorgánicas como el mercurio, el arsénico y el plomo.

Los lagos son especialmente vulnerables a la contaminación. Hay un problema, la eutrofización, que se produce cuando el agua se enriquece de modo artificial con nutrientes, lo que produce un crecimiento anormal de las plantas. Los fertilizantes químicos arrastrados por el agua desde los campos de cultivo pueden ser los responsables. El proceso de eutrofización puede ocasionar problemas estéticos, como mal sabor y olor, y un acúmulo de algas o verdín desagradable a la vista, así como un crecimiento denso de las plantas con raíces, el agotamiento del oxígeno en las aguas más profundas y la acumulación de sedimentos en el fondo de los lagos, así como otros cambios químicos, tales como la precipitación del carbonato cálcico en las aguas duras. Otro problema cada vez más preocupante es la lluvia ácida, que ha dejado muchos lagos del norte y el este de Europa y del noreste de Norteamérica totalmente desprovistos de vida.

Fuentes y control

Las principales fuentes de contaminación acuática pueden clasificarse como urbanas, industriales y agrícolas.

La contaminación urbana está formada por las aguas residuales de los hogares y los establecimientos comerciales. Durante muchos años, el principal objetivo de la eliminación de residuos urbanos fue tan sólo reducir su contenido en materias que demandan oxígeno, sólidos en suspensión, compuestos inorgánicos disueltos (en especial compuestos de fósforo y nitrógeno) y bacterias dañinas. En los últimos años, por el contrario, se ha hecho más hincapié en mejorar los medios de eliminación de los residuos sólidos producidos por los procesos de depuración. Los principales métodos de tratamiento de las aguas residuales urbanas tienen tres fases: el tratamiento primario, que incluye la eliminación de arenillas, la filtración, el molido, la floculación (agregación de los sólidos) y la sedimentación; el tratamiento secundario, que implica la oxidación de la materia orgánica disuelta por medio de cieno biológicamente activo, que seguidamente es filtrado; y el tratamiento terciario, en el que se emplean métodos biológicos avanzados para la eliminación del nitrógeno y métodos físicos y químicos, tales como la filtración granular y la adsorción por carbono activado. La manipulación y eliminación de los residuos sólidos representa entre un 25 y un 50 % del capital y los costes operativos de una planta depuradora.

Las características de las aguas residuales industriales pueden diferir mucho tanto dentro de como entre las empresas. El impacto de los vertidos industriales depende no sólo de sus características comunes, como la demanda bioquímica de oxígeno, sino también de su contenido en sustancias orgánicas e inorgánicas específicas. Hay tres opciones (que no son mutuamente excluyentes) para controlar los vertidos industriales. El control puede tener lugar allí donde se generan dentro de la planta; las aguas pueden tratarse previamente y descargarse en el sistema de depuración urbana; o pueden depurarse por completo en la planta y ser reutilizadas o vertidas sin más en corrientes o masas de agua.

La agricultura, el ganado comercial y las granjas avícolas, son la fuente de muchos contaminantes orgánicos e inorgánicos de las aguas superficiales y subterráneas. Estos contaminantes incluyen tanto sedimentos procedentes de la erosión de las tierras de cultivo como compuestos de fósforo y nitrógeno que, en parte, proceden de los residuos animales y los fertilizantes comerciales. Los residuos animales tienen un alto contenido en nitrógeno, fósforo y materia consumidora de oxígeno, y a menudo albergan organismos patógenos. Los residuos de los criaderos industriales se eliminan en tierra por contención, por lo que el principal peligro que representan es el de la filtración y las escorrentías. Las medidas de control pueden incluir el uso de depósitos de sedimentación para líquidos, el tratamiento biológico limitado en lagunas aeróbicas o anaeróbicas, y toda una serie de métodos adicionales.

Contaminación marina

Se estima, cautelosamente, que en las aguas costeras de Estados Unidos se vierten más de 45 millones de toneladas anuales de residuos contaminantes. Los residuos producidos por dragados representan alrededor de un 80 % del total, un 10 % son residuos industriales y un 9 % es cieno procedente de las aguas residuales. La presencia de sustancias tóxicas, la rápida absorción de los contaminantes por parte de los organismos marinos, los grandes depósitos de materiales en el medio ambiente del fondo costero y el crecimiento excesivo de organismos indeseables tienen consecuencias muy serias. En el Reino Unido, el vertido de residuos industriales en las aguas costeras terminó a finales de 1.992. Por lo que se refiere a los demás tipos de residuos vertidos en el mar, la media anual estimada durante el período 1.981 -1.994 fue de 39.676.000 toneladas. Del total, un 22 % era cieno procedente de aguas residuales y un 78 % (un 14 % de grava y barro y un 64 % de arena y sedimentos) se debía a los dragados (sobre todo de puertos y estuarios). En el Reino Unido está previsto poner fin a los vertidos de cieno residual antes de finales de 1.998.

Vertidos de petróleo (mareas negras)

Las descargas accidentales y a gran escala de petróleo líquido son una importante causa de contaminación de las costas. Los casos más espectaculares de contaminación por crudos suelen estar a cargo de los superpetroleros empleados para transportarlos, pero hay otros muchos barcos que vierten también petróleo, y la explotación de las plataformas petrolíferas marinas supone también una importante aportación de vertidos. Se estima que de cada millón de toneladas de crudo embarcadas se vierte una tonelada. Entre las mayores mareas negras registradas hasta el momento se encuentran la producida por el petrolero Amoco Cádiz frente a las costas francesas en 1.978 (1,6 millones de barriles de crudo) y la producida por el pozo petrolífero Ixtoc I en el golfo de México en 1.979 (3,3 millones de barriles). El vertido de 240.000 barriles por el petrolero Exxon Valdez en el Prince William Sound, en el golfo de Alaska, en marzo de 1.989, produjo, en el plazo de una semana, una marea negra de 6.700 km² que puso en peligro la vida silvestre y las pesquerías de toda el área. Por el contrario, los 680.000 barriles vertidos por el Braer frente a la costa de las islas Shetland en enero de 1.993 se dispersaron en pocos días por acción de las olas propias de unas tormentas excepcionalmente fuertes.

Los vertidos de petróleo acaecidos en el golfo Pérsico en 1.983, durante el conflicto Irán-Irak, y en 1.991, durante la Guerra del Golfo, en los que se liberaron hasta 8 millones de barriles de crudo, produjeron enormes daños en toda la zona, sobre todo por lo que se refiere a la vida marina.

Depuración de aguas

Reciben este nombre los distintos procesos implicados en la extracción, tratamiento y control sanitario de los productos de desecho arrastrados por el agua y procedentes de viviendas e industrias. La depuración cobró importancia progresivamente desde principios de la década de 1.970 como resultado de la preocupación general expresada en todo el mundo sobre el problema, cada vez mayor, de la contaminación humana del medio ambiente, desde el aire a los ríos, lagos, océanos y aguas subterráneas, por los desperdicios domésticos, industriales, municipales y agrícolas.

Historia

Los métodos de depuración de residuos se remontan a la antigüedad y se han encontrado instalaciones de alcantarillado en lugares prehistóricos de Creta y en las antiguas ciudades asirias. Las canalizaciones de desagüe construidas por los romanos todavía funcionan en nuestros días. Aunque su principal función era el drenaje, la costumbre romana de arrojar los desperdicios a las calles significaba que junto con el agua de las escorrentías viajaban grandes cantidades de materia orgánica. Hacia finales de la edad media empezaron a usarse en Europa excavaciones subterráneas privadas primero y, más tarde, letrinas. Cuando éstas estaban llenas, unos obreros vaciaban el lugar en nombre del propietario. El contenido de los pozos negros se empleaba como fertilizante en las granjas cercanas o era vertido en los cursos de agua o en tierras no explotadas.

Unos siglos después se recuperó la costumbre de construir desagües, en su mayor parte en forma de canales al aire o zanjas en la calle. Al principio estuvo prohibido arrojar desperdicios en ellos, pero en el siglo XIX se aceptó que la salud pública podía salir beneficiada si se eliminaban los desechos humanos a través de los desagües para conseguir su rápida desaparición. Un sistema de este tipo fue desarrollado por Joseph Bazalgette entre 1.859 y 1.875 con el objeto de desviar el agua de lluvia y las aguas residuales hacia la parte baja del Támesis, en Londres. Con la introducción del abastecimiento municipal de agua y la instalación de cañerías en las casas llegaron los inodoros y los primeros sistemas sanitarios modernos. A pesar de que existían reservas respecto a estos por el desperdicio de recursos que suponían, los riesgos para la salud que planteaban y su elevado precio, fueron muchas las ciudades que los construyeron.

A comienzos del siglo XX, algunas ciudades e industrias empezaron a reconocer que el vertido directo de desechos en los ríos provocaba problemas sanitarios. Esto llevó a la construcción de instalaciones de depuración. Aproximadamente en aquellos mismos años se introdujo la fosa séptica como mecanismo para el tratamiento de las aguas residuales domésticas tanto en las áreas suburbanas como en las rurales. Para el tratamiento en instalaciones públicas se adoptó primero la técnica del filtro de goteo. Durante la segunda década del siglo, el proceso del cieno activado, desarrollado en Gran Bretaña, supuso una mejora significativa por lo que empezó a emplearse en muchas localidades de ese país y de todo el mundo. Desde la década de 1.970, se ha generalizado en el mundo industrializado la cloración, un paso más dentro del tratamiento químico.

Transporte de las aguas residuales

Las aguas residuales son transportadas desde su punto de origen hasta las instalaciones depuradoras a través de tuberías, generalmente clasificadas según el tipo de agua residual que circule por ellas. Los sistemas que transportan tanto agua de lluvia como aguas residuales domésticas se llaman combinados. Generalmente funcionan en las zonas viejas de las áreas urbanas. Al ir creciendo las ciudades e imponerse el tratamiento de las aguas residuales, las de origen doméstico fueron separadas de las de los desagües de lluvia por medio de una red separada de tuberías. Esto resulta más eficaz porque excluye el gran volumen de líquido que representa el agua de escorrentía. Permite mayor flexibilidad en el trabajo de la planta depuradora y evita la contaminación originada por escape o desbordamiento que se produce cuando el conducto no es lo bastante grande para transportar el flujo combinado. Para reducir costes, algunas ciudades, por ejemplo Chicago, han hallado otra solución, al problema del desbordamiento: en lugar de construir una red separada, se han construido, sobre todo bajo tierra, grandes depósitos para almacenar el exceso de flujo, después bombeado al sistema cuando deja de estar saturado.

Las instalaciones domésticas suelen conectarse mediante tuberías de arcilla, hierro fundido o PVC de entre 8 y 10 cm de diámetro. El tendido de alcantarillado, con tuberías maestras de mayor diámetro, puede estar situado a lo largo de la calle a unos 1,8 m o más de profundidad. Los tubos más pequeños suelen ser de arcilla, hormigón o cemento, y los mayores de cemento reforzado con o sin revestimiento. A diferencia de lo que ocurre en el tendido de suministro de agua, las aguas residuales circulan por el alcantarillado más por efecto de la gravedad que por el de la presión. Es necesario que la tubería esté inclinada para permitir un flujo de una velocidad de al menos 0,46 m por segundo, ya que a velocidades más bajas la materia sólida tiende a depositarse. Los desagües principales para el agua de lluvia son similares a los del alcantarillado, salvo que su diámetro es mucho mayor. En algunos casos, como en el de los sifones y las tuberías de las estaciones de bombeo, el agua circula a presión.

Las canalizaciones urbanas acostumbran a desaguar en interceptadores, que pueden unirse para formar una línea de enlace que termina en la planta depuradora de aguas residuales. Los interceptadores y los tendidos de enlace, construidos por lo general de ladrillo o cemento reforzado, miden en ocasiones hasta 6 m de anchura.

Naturaleza de las aguas residuales

El origen, composición y cantidad de los desechos están relacionados con los hábitos de vida vigentes. Cuando un producto de desecho se incorpora al agua, el líquido resultante recibe el nombre de agua residual.

Origen y cantidad

Las aguas residuales tienen un origen doméstico, industrial, subterráneo y meteorológico, y estos tipos de aguas residuales suelen llamarse respectivamente, domésticas, industriales, de infiltración y pluviales.

Las aguas residuales domésticas son el resultado de actividades cotidianas de las personas. La cantidad y naturaleza de las vertidos industriales es muy variada, dependiendo del tipo de industria, de la gestión de su consumo de agua y del grado de tratamiento que los vertidos reciben antes de su descarga. Una acería, por ejemplo, puede descargar entre 5.700 y 151.000 litros por tonelada de acero fabricado. Si se práctica el reciclado, se necesita menos agua.

La infiltración se produce cuando se sitúan conductos de alcantarillado por debajo del nivel freático o cuando el agua de lluvia se filtra hasta el nivel de la tubería. Esto no es deseable, ya que impone una mayor carga de trabajo al tendido general y a la planta depuradora. La cantidad de agua de lluvia que habrá que drenar dependerá de la pluviosidad así como de las escorrentías o rendimiento de la cuenca de drenaje.

Un área metropolitana estándar vierte un volumen de aguas residuales de entre el 60 y el 80 % de sus requerimientos diarios totales, y el resto se usa para lavar coches y regar jardines, así como en procesos como el enlatado y embotellado de alimentos.

Composición

La composición de las aguas residuales se analiza con diversas mediciones físicas, químicas y biológicas. Las mediciones más comunes incluyen la determinación del contenido en sólidos, la demanda bioquímica de oxígeno (DBO5), la demanda química de oxígeno (DQO), y el pH.

Los residuos sólidos comprenden los sólidos disueltos y en suspensión. Los sólidos disueltos son productos capaces de atravesar un papel de filtro, y los suspendidos los que no pueden hacerlo. Los sólidos en suspensión se dividen a su vez en depositables y no depositables, dependiendo del número de miligramos de sólido que se depositan a partir de 1 litro de agua residual en una hora. Todos estos sólidos pueden dividirse en volátiles y fijos, siendo los volátiles, por lo general, productos orgánicos y los fijos materia inorgánica o mineral.

La concentración de materia orgánica se mide con los análisis DBO5 y DQO. La DBO5 es la cantidad de oxígeno empleado por los microorganismos a lo largo de un período de cinco días para descomponer la materia orgánica de las aguas residuales a una temperatura de 20 °C. De modo similar, el DQO es la cantidad de oxígeno necesario para oxidar la materia orgánica por medio de dicromato en una solución ácida y convertirla en dióxido de carbono y agua. El valor de la DQO es siempre superior al de la DBO5 porque muchas sustancias orgánicas pueden oxidarse químicamente, pero no biológicamente. La DBO5 suele emplearse para comprobar la carga orgánica de las aguas residuales municipales e industriales biodegradables, sin tratar y tratadas. La DQO se usa para comprobar la carga orgánica de aguas residuales que, o no son biodegradables o contienen compuestos que inhiben la actividad de los microorganismos. El pH mide la acidez de una muestra de aguas residuales. Los valores típicos para los residuos sólidos presentes en el agua y la DBO5 del agua residual doméstica aparecen en la tabla adjunta. El contenido típico en materia orgánica de estas aguas es un 50 % de carbohidratos, un 40 % de proteínas y un 10 % de grasas; el pH puede variar de 6,5 a 8,0.

No es fácil caracterizar la composición de los residuos industriales con arreglo a un rango típico de valores dado según el proceso de fabricación. La concentración de un residuo industrial se pone de manifiesto enunciando el número de personas, o equivalente de población (PE), necesario para producir la misma cantidad de residuos. Este valor acostumbra a expresarse en términos de DBO5. Para la determinación del PE se emplea un valor medio de 0,077 kg 5-días, 20 °C DBO por persona y día. El equivalente de población de un matadero, por ejemplo, oscilará entre 5 y 25 PE por animal.

La composición de las infiltraciones depende de la naturaleza de las aguas subterráneas que penetran en la canalización. El agua de lluvia residual contiene concentraciones significativas de bacterias, elementos traza, petróleo y productos químicos orgánicos.

Bibliografía:

Revista "MUY Interesante"

Revista "Novedades de la Unión Soviética"

"Enciclopedia Microsoft ® Encarta ® 2.000"

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Actualizado:

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.