Fisicanet ®

Medición potenciométrica

El problema es determinar la fem de X.
V: fuente estable.
G: galvanómetro.
X: fuente desconocida.
P: fuente conocida.
1. Circuito cerrado
V = constante
I = constante
Se corre el cursor hasta que G = 0.

Circuito básico de medición potenciométrica
Circuito básico de medición potenciométrica

Entonces:

Ex = I·R1

Se cambia la fuente desconocida (X) por otra conocida (P).

Ex=I·R1=r1
EPI·R2r2
Ex=r1
EPr2

Leyes de Kirchhoff

Si un circuito tiene un número de derivaciones interconectadas, es necesario aplicar otras dos leyes para obtener el flujo de corriente que recorre las distintas derivaciones.

1° ley de Kirchhoff:

La ley de los nudos o nodos, enuncia que en cualquier unión en un circuito a través del cual fluye una corriente constante, la suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen del mismo.

∑i = 0 (en un nodo)

Representación de un nodo

i1 = i2 + i3 + i4

2° ley de Kirchhoff:

La ley de las mallas afirma que, comenzando por cualquier punto de una red y siguiendo cualquier trayecto cerrado de vuelta al punto inicial, la suma neta de las fuerzas electromotrices halladas será igual a la suma neta de los productos de las resistencias halladas y de las intensidades que fluyen a través de ellas. Esta segunda ley es sencillamente una ampliación de la ley de Ohm.

Circuito eléctrico con resistencias en serie
Circuito eléctrico con resistencias en serie

∑(V + fem) = 0 (en una malla)

V - V1 - V2 = 0

En un elemento activo el sentido de la corriente y de la tensión son iguales.

En un elemento pasivo el sentido de la tensión es inverso al de la corriente.

Vi = i1·R1 + i2·R2 + i3·R3 = Vf

Circuito eléctrico con resistencias en paralelo
Circuito eléctrico con resistencias en paralelo

Trabajo eléctrico

L = q·V

P =L
t
P =q·V
t

P = i·V

Como:

V = i·R

P = i²·R

También:

i =V
R
P =
R

[P] = W

Otra unidad es el elctrón volt: es la energía adquirida por una partícula cuya carga es igual a la de un electrón, cuando esa partícula pasa por una diferencia de potencial de un volt en el vacío.

qe = 1,6·10-19 C

L = qe·V

L = 1,6·10-19 C·1 V

L = 1,6·10-19 J

Representación de un capacitor
Representación de un capacitor

1 eV = 1,6·10-19 J

En serie:

P1 = i²·R1

P1 = (2 A)²·1 Ω

P1 = 4 A²·1 Ω

P1 = 4 W

P2 = i²·R2

P2 = (2 A)²·2 Ω

P2 = 4 A²·2 Ω

P2 = 8 W

En paralelo:

P1 = i1²·R1

P1 = (6 A)²·1 Ω

P1 = 36 A²·1 Ω

P1 = 36 W

P2 = i2²·R2

P2 = (3 A)²·2 Ω

P2 = 9 A²·2 Ω

P2 = 18 W

V = E + I·Ri

Circuito eléctrico con resistencias en serie y en paralelo
Circuito eléctrico con resistencias en serie y en paralelo

P = V·I

P = E·I + I·Ri·I

P = E·I + I²·Ri

En carga:

P = E·I + I²·Ri

E·I: rapidez de carga
I²·Ri: rapidez de pérdida

En consumo:

P = E·I + I²·Ri

E·I: rapidez de conversión de energía química en eléctrica.
I²·Ri: pérdida por calor

Autor: Ricardo Santiago Netto (Administrador de Fisicanet)

San Martín. Buenos Aires. Argentina.

Ver condiciones para uso de los contenidos de fisicanet.com.ar

¿Qué dice la primera ley de Kirchhoff?

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.