Fisicanet ®

Contenido: Solución del ejercicio n° 9 de palanca. Estática. Problema resuelto. Ejemplo, cómo calcular fuerzas, potencia, resistencia y pesos en palancas. Problemas de estática resueltos y fáciles.

Problema n° 9 de palanca. Estática

Problema n° 9

En la figura, se esquematiza una barra cilíndrica de 3,5 m de largo y 10 kgf de peso (aplicada en un punto medio), está apoyada en uno de sus extremos. Se le aplica la fuerza F1 = 48 kgf en el otro extremo y la fuerza F2 = 15 kgf a 2,7 m del apoyo. ¿A qué distancia debe aplicarse la fuerza F3 = 50 kgf (con sentido igual a F2), para que la barra esté en equilibrio?

Desarrollo

Datos:

d = 3,5 m

P = 10 kgf

dP = 1,75 m

F1 = 48 kgf

d1 = 3,5 m

F2 = 15 kgf

d2 = 2,7 m

F3 = 50 kgf

Fórmulas:

Condición de equilibrio: La sumatoria de los momentos de las fuerzas debe ser nula: Primera ley de Newton (equilibrio)

∑F·d = 0

Esquema:

Momento de una fuerza

Solución

Las fuerzas que giran en sentido horario son negativas.

F2·d2 + F3·d3 - F1·d1 - P·dP = 0

15 kgf·2,7 m + 50 kgf·d3 - 48 kgf·3,5 m - 10 kgf·1,75 m = 0

Mientras hacemos las cuentas despejamos d3:

40,5 kgf·m - 168 kgf·m - 17,5 kgf·m = -50 kgf·d3

145 kgf·m = -50 kgf·d3

-145 kgf·m/-50 kgf = d3

Resultado, la distancia a la que debe aplicarse la fuerza para mantener el equilibrio es:

d3 = 2,9 m

This work by Ricardo Santiago Netto is licensed under CC BY-NC-SA 4.0

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.