Problema n° 4 de movimiento circular en el plano - TP18

Enunciado del ejercicio n° 4

Un cuerpo que pesa 0,5 N y está atado al extremo de una cuerda de 1,5 m, da 40 vueltas por minuto. Calcular la fuerza ejercida sobre la cuerda.

Desarrollo

Datos:

ω = 40 vueltas

T = 1 min = 60 s

r = 1,5 m

m = 0,5 N

g = 10 m/s²

Fórmulas:

F = m·a (1)

P = m·g (2)

ω =2·π(3)
T

aN = r·ω² (4)

Solución

La fuerza ejercida sobre la cuerda estará dada por la ecuación (1) pero con la aceleración normal:

F = m·aN (5)

Debemos hallar la masa que la obtenemos de la ecuación (2) y la aceleración normal que la calculamos con la ecuación (4):

P = m·g

m =P
g

Reemplazamos y calculamos:

m =0,5 N
10 m/s²

m = 0,05 kg

Luego, con la ecuación (3) hallamos la velocidad angular:

ω =2·π
T

Reemplazamos y calculamos:

ω =40·2·π
60 s
ω =4·π
3 s

ω = 4,189 s-1

Con la velocidad angular aplicamos la ecuación (4):

aN = r·ω²

Reemplazamos y calculamos:

aN = 1,5 m·(4,189 s-1

aN = 1,5 m·17,546 s-2

aN = 26,319 m/s²

Finalmente aplicamos la ecuación (5):

F = m·aN

Reemplazamos y calculamos:

F = 0,05 kg·26,319 m/s²

Resultado, la fuerza ejercida sobre la cuerda es:

F = 1,32 N

Autor: Ricardo Santiago Netto. Argentina

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.