Problema n° 2 de encuentro - TP20

Enunciado del ejercicio n° 2

Resolver el problema anterior, suponiendo que el primer móvil partió 0,1 s antes que el otro.

Desarrollo

Datos:

dAB = 100 m

tAB = 2 s

tBA = 1,5 s

Fórmulas:

vAB =dAB(1)
tAB
vBA =dBA(2)
tBA

Solución

El tiempo empleado por el móvil A para recorrer los 100 m es el mismo, solamente comenzó 0,1 s antes, por lo tanto cuando el móvil B comienza su recorrido, el móvil A ya recorrió cierto espacio. De la ecuación (1):

vAB = (100 m)/(2 s)

vAB = 50 m/s

La distancia inicial es:

Δd = vAB·(0,1 s)

Δd = (50 m/s)·(0,1 s)

Δd = 5 m

a)

Para el punto de encuentro:

dAB = dAO + 5 m + dBO (3)

Siendo el punto O el punto de encuentro.

Como ambos comienzan su movimiento en el mismo instante el tiempo de encuentro es el mismo para ambos móviles.

tAO - 0,1 s = tBO = tE

Luego contiuamos como en el ejercicio (1):

Para el encuentro las (1) y (2) ecuaciones quedan:

vAB =dAO
tE
dAB=dAO
tABtE
vBA =dBO
tE
dAB=dBO
tBAtE

Despejamos (tE) y luego igualamos:

tE =tAB·dAO(4)
dAB
tE =tBA·dBO(5)
dAB
tAB·dAO=tBA·dBO
dABdAB

tAB·dAO = tBA·dBO

De la ecuación (3):

dAO = dAB - dBO - 5 m

tAB·(dAB - dBO - 5 m) = tBA·dBO

tAB·dAB - tAB·dBO - tAB·(5 m) = tBA·dBO

tAB·dAB - tAB·(5 m) = tAB·dBO + tBA·dBO

tAB·(dAB - 5 m) = (tAB + tBA)·dBO

dBO =tAB·(dAB - 5 m)
tAB + tBA
dBO =2 s·(100 m - 5 m)
2 s + 1,5 s

Resultado, el punto de encuentro es:

dBO = 54,29 m (desde el punto B)

ó

dAO = 45,71 m (desde el punto A)

b)

Empleando la ecuación (4) ó (5):

tE =1,5 s·54,29 m
100 m

Resultado, el momento del encuentro es:

tE = 0,81 s

Autor: Ricardo Santiago Netto. Argentina

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.