Fisicanet ®

Solución del ejercicio n° 10 de encuentro, movimiento uniformemente variado en el plano. MUV. Problema resuelto. Ejemplo, cómo calcular el lugar y tiempo de encuentro. Nivel medio, secundaria, ESO.

Problema n° 10 de encuentro

Problema n° 10

Dos automóviles están en la misma ruta, viajan en el mismo sentido con una diferencia de 6 km. El que esta más adelante tiene una rapidez de 80 km/h y el que esta atrás, una de 100 km/h. ¿Cuánto tardará en alcanzarlo? ¿En qué km lo alcanzará?

Desarrollo

Datos:

v1 = 80 km/h

v2 = 100 km/h

Δx = 6 km

Fórmulas:

Se trata de "movimiento rectilíneo uniforme", por la tanto la fórmula es:

v = Δx/t

Solución

Armamos una ecuación para cada móvil:

v1 = Δx1/Δt1 (1)

v2 = Δx2/Δt2 (2)

Ahora bien, a partir del instante que se tomo como inicio del suceso el tiempo que ambos tardaran en encontrarse será el mismo:

Δt1 = Δt2 = Δt

v1 = Δx1/Δt (1)

v2 = Δx2/Δt (2)

El móvil "2" recorrerá más distancia para alcanzar al primero, será:

Δx2 = Δx + Δx1

Las ecuaciones quedan:

v1 = Δx1/Δt (1)

v2 = (Δx + Δx1)/Δt (2)

Despejamos Δx1 de la ecuación (1):

Δx1 = v1·Δt (1)

Reemplazamos en la (2):

v2 = (Δx + v1·Δt)/Δt (2)

Trabajamos la ecuación algebraicamente:

v2·Δt = Δx + v1·Δt

v2·Δt - v1·Δt = Δx

(v2 - v1)·Δt = Δx

Δt = Δx/(v2 - v1)

Resolvemos:

Δt = 6 km/(100 km/h - 80 km/h)

Δt = 6 km/(20 km/h)

Δt = 0,3 h

Resultado, el tardará en alcanzarlo es:

Δt = 20 minutos

Con este valor resolvemos la ecuación (2):

v2 = Δx2/Δt

v2·Δt = Δx2

Δx2 = 100 km/h·0,3 h

Resultado, lo alcanzará en el km:

Δx2 = 30 km

El móvil "2" deberá recorrer 30 km más desde el inicio de la comparación.

Enviado por: Paola P.

Actualizado:

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.