Fisicanet ®

Ejemplo, cómo calcular la fuerza resultante de un sistema de masas en movimiento

Problema n° 4 de fuerza, peso y aceleración con rozamiento

Enunciado del ejercicio n° 4

La cuerda se rompe para una tensión de 1.000 N. Calcular la fuerza con la que hay que tirar de m1 para que se rompa la cuerda, si μ = 0,1 entre los dos cuerpos, y μ = 0,2 entre m1 y la superficie.

Desarrollo

Datos:

m1 = 10 kg

m2 = 1 kg

μ12 = 0,1

μ1s = 0,2

T = 1.000 N

g = 10 m/s²

Fórmulas:

Fr = μ·N (1)

Condición de equilibrio (Primera ley de Newton):

∑Fx = 0

∑Fy = 0

Esquema:

Esquema de los cuerpos, la fuerza y una polea

Solución

La fuerza de rozamiento siempre es contraria al movimiento y, por lo tanto, actúa como freno.

Realizamos el esquema de las fuerzas para ambas masas y planteamos las ecuaciones de equilibrio, el sentido del eje de las X será el del movimiento:

Masa "1":

Diagrama de fuerzas
Diagrama de fuerzas para la masa 1

En el eje X:

Fx - Fr1 - T21 = 0 (2)

Fx: es la fuerza mínima para vencer el rozamiento y poner al sistema en movimiento.

En el eje Y:

N1 - P1 - P2 = 0 (3)

Masa "2":

Diagrama de fuerzas
Diagrama de fuerzas para la masa 2

En el eje X:

T12 - Fr2 = 0 (4)

En el eje Y:

N2 - P2 = 0 (5)

Planteamos todo en un mismo eje sabiendo que:

T21 = T12 = T

En el eje X las ecuaciones (2) y (4) quedan:

Fx - Fr1 - T = 0 (2)

T - Fr2 = 0 (4)

Despejamos T:

Fx - Fr1 = T

T = Fr2

Igualamos:

Fx - Fr1 = Fr2

Fx = Fr1 + Fr2 (6)

Respecto a las fuerzas de rozamiento empleamos la ecuación (1):

Fr1 = μ1s·N1

Fr1 = μ1s·(P1 + P2)

Fr1 = μ1s·(m1·g + m2·g)

Fr2 = μ12·N2

Fr2 = μ12·P2

Fr2 = μ12·m2·g

Reemplazamos las fuerzas de rozamiento en la ecuación (6):

Fx = μ1s·(m1·g + m2·g) + μ12·m2·g

Reemplazamos por los valores y calculamos:

Fx = 0,2·(10 kg·10 m/s² + 1 kg·10 m/s²) + 0,1·1 kg·10 m/s²

Fx = 0,2·(100 N + 10 N) + 0,1·10 N

Fx = 0,2·110 N + 1 N

Fx = 22 N + 1 N

Fx = 23 N (fuerza necesaria para sacar al sistema de equilibrio)

Para romper la cuerda necesitamos sumarle a Fx la tensión de rotura T:

F = Fx + T

F = 23 N + 1.000 N

Resultado, la fuerza con la que hay que tirar de m1 para que se rompa la cuerda es:

F = 1.023 N

Autor: Ricardo Santiago Netto (Administrador de Fisicanet)

San Martín. Buenos Aires. Argentina.

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.