Fisicanet ®

Ejemplo de cóamo resolver ejercicios de movimiento armónico con resortes

Problema n° 7 de movimiento armónico simple

Enunciado del ejercicio n° 7

Dos resortes, de 0,2 m de longitud natural cada uno, pero con constantes de recuperación k1 y k2 diferentes, están unidos a las caras opuestas de un bloque de masa m situado sobre una superficie horizontal sin rozamiento. Los dos extremos de los resortes se fijan a dos clavos P1 y P2 situados a 10 cm de las posiciones iniciales de los resortes. Sean

k1 = 1 N/m

k2 = 3 N/m

m = 0,1 kg.

Esquema de resortes sometidos a elongación horizontal
Esquema de resortes sometidos a elongación horizontal

a) Calcúlese la longitud de cada resorte cuando el bloque está en la nueva posición de equilibrio, después de sujetar los resortes a los clavos.

b) Determínese el período de oscilación del bloque si este se desplaza ligeramente de su nueva posición de equilibrio y se abandona a si mismo.

Solución

a)

Teniendo en cuenta que se tiene las longitudes originales a cuales las denominaremos Lo1 y Lo2 = 0,2 m, tendremos la resultante de las fuerzas por los 2 resortes:

x1 = x2 = 0,1 m

k1 = 1 N/m

k2 = 3 N/m

FT = F1 + F2

Deduciendo y aplicando F = k·x, tenemos:

Ktotal·xtotal = k1·x1 + k2·x2

Ktotal = k1 + k2; y,

xtotal = x1 + x2; por consiguiente:

4(x1 + x2) = k1·x1 + k2·x2

4 =k1·(x1 - x2) + k2·x2
x1 - x2 + x2

Desarrollando:

4·x1 = k1·(x1 - x2) + k2·x2

Dejamos todo para despejar x2, que es el factor a sacar su valor:

x2 =4·x1 - k1·x1
k2 - k1
x2 =4·0,2 - 1·0,2
3 - 1

x2 = 0,3 m

xt = xt + x2

x1 = xt - x2

x1 = 0,2 - 0,3 = 0,1 m

Ahora L1 = 0,1 m y L2 es 0,3 m

b)

T = 2·π·m/k1

T = 2·π·0,1/4 = 0,993 s

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.