Problema n° 7 de gases ideales, masa de un gas - TP03

Enunciado del ejercicio n° 7

¿Cuánto pesa el aire de una habitación de 8 m × 5 m × 4 m a 27 °C y 720 mm de Hg? (δ = 1,293 kg/m³).

Desarrollo

Datos:

p1 = 720 mm de Hg

p2 = 1 atm

T1 = 27 °C

T2 = 237 K

V1 = 8 m × 5 m × 4 m

δ = 1,293 kg/m³

Fórmulas:

δ =m
V
p1·V1=p2·V2
T1T2

Solución

Adecuamos las unidades:

p1 = 720 mm de Hg·1 atm
760 mm Hg

p1 = 0,9474 atm

T1 = 27 °C = 300 K

δ = 1,293 kg/m³ = 1,293 g/dm³

Calculamos el volumen de la habitación:

V1 = 8 m·5 m·4 m

V1 = 160 m³ = 160.000 dm³

Aplicamos la ecuación general de los gases ideales para determinar el volumen que ocuparía el gas en CNPT, despejamos V2:

V2 =p1·V1·T2
p2·T1

Reemplazamos por los datos y calculamos:

V2 =0,9474 atm·160.000 dm³·273 K
1 atm·300 K

V2 = 137.941,44 dm³

Con este dato y la densidad calculamos la masa con la primera ecuación:

δ =m
V2

m = δ·V2

m = 1,293 g/dm³·137.941,44 dm³

Resultado, la masa del aire en la habitación es:

m = 178.358,28 g

Autor: Ricardo Santiago Netto. Argentina

Ejemplo, cómo determinar la masa de un gas

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.