Guía de ejercicios de diferenciación. TP04

Funciones de varias variables: Solución del ejercicio n° 13 de recta tangente y plano normal. Ecuación cartesiana del plano normal. Problema resuelto. Ejemplo, cómo hallar la ecuación cartesiana del plano normal a la curva

Problema n° 13 de funciones de varias variables.

Problema n° 13) Escribir la ecuación cartesiana del plano normal a la curva (cos 3·t, sen 3·t, t²) en el punto:

(0, 1, π²/4)

Si el problema esta bien puesto.

Desarrollo

Fórmulas:

Plano: Z·X'(t) = X(t)·X'(t)

Recta: Z = X(t) + μ·X'(t)

Solución

Debe verificar:

Cálculo del plano normal a una curva

Verifica para: -π/2

Luego:

C(-π/2) = (0, 1, π²/4)

C(t) = (cos 3·t, sen 3·t, t²)

C'(t) = (-3·sen 3·t, 3·cos 3·t, 2·t)

C'(-π/2) = [-3·sen 3·(-π/2), 3·cos 3·(-π/2), 2·(-π/2)]

C'(-π/2) = [-3·sen π/2, 3·cos (-3·π/2), -π]

C'(-π/2) = [-3, 0, -π]

Para el plano:

X·C'(-π/2) = C(-π/2)·C'(-π/2)

(x, y, z)·(-3, 0, -π) = (0, 1, π²/4)·(-3, 0, -π)

-3·x - π·z = -π·π²/4

Resultado, la ecuación cartesiana del plano normal a la curva es:

3·x + π·z = π³/4

Copyright © 2.000-2.028 Fisicanet ® Todos los derechos reservados

https://www.fisicanet.com.ar/matematica/funciones2/resueltos/tp04-diferenciacion-13.php

Signos utilizados en las fórmulas y cálculos:

  • Signo separador de miles: punto (.)
  • Signo separador decimal: coma (,)
  • Signo de multiplicación: punto medio (·) o × (para producto vectorial)
  • Signo de división: barra (/) o dos puntos (:)

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet ®".

Por favor, "copia y pega" el enlace completo a ésta página.

¡Gracias!

Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de privacidad.
Aceptar