Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de privacidad.

 

Guía de ejercicios de teorema de Stokes. TP10

Integrales: Solución del ejercicio n° 6 de teorema de Stokes. Campos centrales. Integrales sobre superficies. Problema resuelto. Ejemplo, cómo verificar el teorema de Stokes en una superficie

Coronavirus COVID-19

Seamos responsables: higiene y aislamiento

Signos utilizados en las fórmulas y cálculos:

  • Signo separador de miles: punto (.)
  • Signo separado decimal: coma (,)
  • Signo de multiplicación: punto medio (·) o ×
  • Signo de división: barra (/) o dos puntos (:)

Problema n° 6 de integrales.

Problema n° 6) Sea F = α(r)·X, con r = ||X||, un campo central de clase C¹ en ℜ³, y sea S la superficie regular x² + y² + r²/4 = 1, z ≥ 0. Verificar el teorema de Stokes.

Por ser un campo de forma F = α(r)·X es conservativo en ℜ³, resultando rot F = 0, luego:

∫∫S α rotF·dS = 0

concluyendo con el segundo miembro del teorema, para el primer miembro y con un esquema similar a la figura del ejercicio 3, parametrizamos la frontera de S1, es decir ∂S:

C = (cos t, sen t, 0), 0 ≤ t ≤ 2·π

Preparamos las partes de la integral:

C´ = (-sen t, cos t, 0)

De la superficie surge que r = 1:

F(C(t)) = α(1)·(cos t, sen t, 0)

Planteamos la integral del primer miembro:

Resolución de la integral

Verificado.

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet ®".

Por favor, "copia y pega" el enlace completo a ésta página.

https://www.fisicanet.com.ar/matematica/integrales/resueltos/tp10-teorema-de-stokes-06.php

¡Gracias!

Copyright © 2.000-2.028 Fisicanet ® Todos los derechos reservados

https://www.fisicanet.com.ar/matematica/integrales/resueltos/tp10-teorema-de-stokes-06.php