Éste sitio web usa cookies, si permanece aquí acepta su uso. Puede leer más sobre el uso de cookies en nuestra política de privacidad.

 

Guía de ejercicios resueltos de regresión. TP04

Probabilidades y estadísticas: Solución del ejercicio n° 3 de regresión lineal. Problema resuelto.

Problema n° 3 de probabilidades y estadísticas.

Problema n° 3) Se desea construir una tabla que permita a los productores de una localidad estimar el volumen de madera de una plantación a través de observaciones no destructivas, como contar el número de árboles y medir el diámetro del tronco. Con ese fin se estudió la relación entre el diámetro a la altura del pecho (D.A.P.) y el volumen de madera por árbol (VOL), en árboles de 14 a 16 años de edad de la especie Pinus elliotti, en la localidad de Esquina (Corrientes). Se obtuvieron las siguientes observaciones y se realizó un gráfico de dispersión.

 

ARBOL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

D.A.P. (cm)
VOL (dm³)

24,9
52,24

21,4
33,21

29,4
70,14

18,5
25,29

15,2
14,60

13,4
11,75

16,6
19,39

27
59,24

11,5
6,83

25,3
50,55

12,2
7,86

21,6
31,07

23,2
39,31

15,4
13,24

 

ARBOL

15

16

17

18

19

20

21

22

23

24

25

D.A.P. (cm)
VOL (dm³)

27,2
58,30

17,3
18,67

11,1
7,11

29,4
71,56

18,6
23,70

20,4
30,35

23
43,95

11,5
8,69

15,7
15,09

17,4
21,55

12,2
6,33

 

El análisis de regresión produjo los siguientes resultados:

R² = 0,9676

Coeficientes

Error standard

t Student

Probabilidad

Intercepción

-37,044

2,6535

-13,9602

1,0204·10-12

Pendiente

3,4754

0,1326

26,2090

1,24153·10-18

Estadísticas de la regresión

Coeficiente de correlación múltiple
Coeficiente de determinación R²
R² ajustado
Error típico
Observaciones

0,983667767
0,967602277
0,96619368
3,792909771
25

Análisis de varianza

 

Grados de libertad

Suma de cuadrados

Promedio de los cuadrados

F

Valor crítico de F

Regresión

1

9882,2366

9882,2366

686,926427

1,2412·10-18

Residuos

23

330,8817841

14,3861645

   

Total

24

10213,11838

     

 

 

Coeficientes

Error típico

Estadístico t

Probabilidad

Inferior 95%

Superior 95,0%

Intercepción

-37,04788413

2,653676876

-13,9609628

1,0192·10-12

-42,5374255

-31,5583427

D.A.P. (cm) (x)

3,47563017

0,132610663

26,2092813

1,2412·10-18

3,20130449

3,74995585

 

Análisis de los residuales

Observación

Pronóstico VOL (dm³) (y)

Residuos

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

49,49530709
37,3306015
65,13564285
27,25127401
15,78169445
9,525560141
20,64757668
56,79413045
2,921862819
50,88555916
5,354803937
38,02572753
43,5867358
16,47682048
57,48925648
23,0805178
1,531610751
65,13564285
27,59883702
33,85497133
42,89160977
2,921862819
17,51950953
23,42808082
5,354803937

2,74469291
-4,120601497
5,004357147
-1,961274005
-1,181694446
2,224439859
-1,257576683
2,445869554
3,908137181
-0,335559158
2,505196063
-6,955727531
-4,276735802
-3,23682048
0,81074352
-4,410517802
5,578389249
6,424357147
-3,898837022
-3,504971327
1,058390232
5,768137181
-2,429509531
-1,878080819
0,975196063

Presente el modelo de regresión lineal estimado para predecir el volumen por árbol en función del diámetro del tronco. Identifique los estimadores de los parámetros y las variables explicativa y de respuesta.

Yi = β0 + β1·Xi + εi

Con Yi = volumen del arbol (variable respuesta)

Xi = diámetro del tronco (variable explicativa)

b0 = estimador de ordenada al origen = -37,044

b1 = estimador de pendiente = 3,4754

Proponga hipótesis de interés para poner a prueba y comente los resultados.

H0: β1 = 0; H1: β1 ≠ 0.

Dado que el valor p = 1,2412·10-18 la pendiente es significativa.

¿Qué interpretación biológica puede darse a una pendiente significativa de 3,475 en este contexto?

Que ante un aumento de 1 cm en el diámetro del árbol, se obtendrá un aumento de 3,475 dm³ en el volumen del árbol.

¿Qué indica un coeficiente de determinación (R²) igual a 0,9676?

Que el 96,76% de las variaciones en el volumen están explicadas por las variaciones en el diámetro del árbol.

Calcule el valor estimado y el residual de la observación correspondiente al árbol 16.

Y(16)esperado = -37,044 + 3,4754·17,3 = 23,08042

Y(16)observado = 18,67

e(16) = 18,67 - 23,08042 = -4,41042

¿Se puede afirmar, con una probabilidad de error del 5%, que el volumen de madera aumenta significativamente cuando el D.A.P. aumenta?

H0: β1 = 0 vs. H1: β1 ≠ 0.

Si H0 es cierta, entonces se estima que no existe asociación alguna entre X e Y.

tc =  (b1 - β1)/s(b1) = (3,4754-0)/0,1326 = 26,20

tiene distribución tn-2 para el modelo que estamos utilizando, luego t tabla = tn-2;α/2 = t23; 0,025 = 2,068654794

Como t calculado > t tabla rechazo Ho entonces hay regresión.

Calcule un IC90 para la pendiente del modelo.

P{b1 - t(α/2;n - 2)·s(b1) ≤ β1 ≤ b1 + t(α/2;n - 2)·s(b1)} = 1 - α

con b = 3,4754

S(b1) = 0,1326

tαn-2; α/2 = t23; 0,025 = 1,713870006

3,24835273

3,70290761

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet ®".

Por favor, "copia y pega" el enlace completo a ésta página.

https://www.fisicanet.com.ar/matematica/estadisticas/resueltos/tp04_regresiones03.php

¡Gracias!

Copyright © 2000-2028 Fisicanet ® Todos los derechos reservados

https://www.fisicanet.com.ar/matematica/estadisticas/resueltos/tp04_regresiones03.php