Fisicanet ®

Contenido: Solución del ejercicio n° 3 de teoría de probabilidades. Distribución binomial y distribución normal. Problema resuelto. Ejemplo, cómo calcular la probabilidad de que ocurra un suceso

Problema n° 3 de probabilidades y estadísticas

Problema n° 3

El 34 % de los árboles de un bosque tienen más de 15 años. El 54 % son de la variedad A. De los de la variedad A, el 7 % tiene más de 15 años. Si se elige un árbol al azar:

  1. ¿Cuál es la probabilidad de que tenga más de 15 años y sea de la variedad A?
  2. ¿Cuál es la probabilidad de que teniendo menos de 15 años, sea de la variedad A?

Desarrollo

Datos:

P(X > 15) = 0,34

P(A) = 0,54

P(X > 15/A) = 0,07

Solución

  1. P(X > 15 ∩ A) = P(A)·P(X > 15/A) = (0,54)·(0,07) = 0,0378;
  2. P(A/X > 15) = P(A ∩ X > 15)/P(X > 15) = 0,0378/0,34 = 0,1112

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.