Fisicanet ®

Ejercicios resueltos de funciones lineales. TP-01

Funciones: Solución del ejercicio n° 2 de funciones lineales. TP-01

Problema n° 2 de funciones lineales. TP-01

2) Hallar las ecuaciones implícita y explícita de las siguientes rectas y graficar:

a) Pasa por el punto P(2;2) y es paralela a la recta de ecuación 3.x - 2.y + 1 = 0.

b) Pasa por el punto P(-1;3) y es perpendicular a la recta de ecuación -3.x/2 + 5.y/6 - 8 = 2.

c) r1 pasa por el punto Q1(2;3) y r2 pasa por el punto Q2(-2;-3), sabiendo que son perpendiculares.

 

a)

Desarrollo

Datos:

P(2;2)

3.x - 2.y + 1 = 0

Solución

Expresamos la segunda recta en forma explícita:

3.x - 2.y + 1 = 0

3.x + 1 = 2.y

2.y = 3.x + 1

y = (3.x + 1)/2

y = 3.x/2 + 1/2

La pendiente de la segunda recta es:

m2 = 3/2

La ordenada al origen es:

b2 = 1/2

Si la recta buscada es paralela a la segunda recta, entonces:

m1 = m2

Ahora utilizamos la fórmula para generar la ecuación de una recta con la pendiente y un punto:

y - y1 = m1.(x - x1)

Reemplazando:

y - 2 = (3/2).(x - 2)

y - 2 = (3/2).x - (3/2).2

y - 2 = 3.x/2 - 3

y = 3.x/2 - 3 + 2

y = 3.x/2 - 1

m1 = 3/2

b1 = -1

Gráfica:

b)

Desarrollo

Datos:

P(-1;3)

-3.x/2 + 5.y/6 - 8 = 2

Solución

Expresamos la segunda recta en forma explícita:

-3.x/2 + 5.y/6 = 8 + 2

5.y/6 = 3.x/2 + 10

y = 6.(3.x/2 + 10)/5

y = (18.x/2 + 60)/5

y = (9.x + 60)/5

y = 9.x/5 + 60/5

y = 9.x/5 + 12

La pendiente de la segunda recta es:

m2 = 9/5

La ordenada al origen es:

b2 = 12

Si la recta buscada es perpendicular a la segunda recta, entonces:

m1 ⊥ m2 ⇒ m1 = -1/m2

Entonces:

m1 = -1/(9/5) = -5/9

Ahora utilizamos la fórmula para generar la ecuación de una recta con la pendiente y un punto:

y - y1 = m1.(x - x1)

Reemplazando:

y - 3 = (-5/9).(x - (-1))

y - 3 = (-5/9).(x + 1)

y - 3 = -5.x/9 - 5/9

y = -5.x/9 - 5/9 + 3

y = -5.x/9 + (- 5 + 3.9)/9

y = -5.x/9 + (- 5 + 27)/9

y = -5.x/9 + 22/9

m1 = -5/9

b1 = 22/9

Gráfica:

c)

Desarrollo

Datos:

Q1(2;3)

Q2(-2;-3)

r1 ⊥ r2

Solución

Dado que las rectas son perpendiculares, sus pendientes son:

m1 = -1/m2

r1: y - y1 = m1.(x - x1)

r2: y - y2 = m2.(x - x2) ⇒ y - y2 = (-1/m1).(x - x2)

r1: y - 3 = m1.(x - 2)

r2: y - (-3) = (-1/m1).(x - (-2)) ⇒ y + 3 = (-1/m1).(x + 2)

Despejamos la pendiente m1 de la ecuación r1:

r1: y - 3 = m1.(x - 2)

m1 = (y - 3)/(x - 2) (1)

Y la reemplazamos en la ecuación de r2:

y + 3 = [-1/((y - 3)/(x - 2))].(x + 2)

Luego resolvemos algebraicamente:

y + 3 = [-(x - 2)/(y - 3)].(x + 2)

(y + 3). (y - 3) = -(x - 2).(x + 2) (2)

y² - 3² = -(x² - 2²)

y² - 9 = -(x² - 4)

y² - 9 = -x² + 4

y² + x² = 4 + 9

y² + x² = 13

Todos los puntos que satisfagan ésta ecuación corresponden a rectas perpendiculares que pasan por los puntos citados. Observando la ecuación (2) obtenemos los puntos que cumplen con la ecuación.

Para y = 3, tenemos:

(3)² + x² = 13

9 + x² = 13

x² = 13 - 9

x² = 4

x1 = 2

x2 = -2

Formamos los puntos:

Q1(2;3) se descarta, está dado en el enunciado.

P1(-2;3)

Para y = -3, tenemos:

(-3)² + x² = 13

9 + x² = 13

x² = 13 - 9

x² = 4

x1 = 2

x2 = -2

Formamos los puntos:

Q2(-2;-3) se descarta, está dado en el enunciado.

P2(2;-3)

P1 y P2 son puntos de intersección de distintos pares de rectas perpendiculares, con cualquiera de ellos y los datos del enunciado podemos formar un par de rectas perpendiculares que pasen por los puntos Q1 y Q2.

Tomemos P2 y reemplacemos en la ecuación de la pendiente (2):

m1 = (y - 3)/(x - 2)

m1 = (-3 - 3)/(2 - 2)

m1 = -6/0 → ∞

¡Solución indeterminada! Correcto una pendiente es paralela al eje "y".

Usemos P1 y reemplacemos en la ecuación (2):

m1 = (y - 3)/(x - 2)

m1 = (3 - 3)/(-2 - 2)

m1 = -0/4 → 0

Pendiente paralela el eje "x", cumple con la condición de perpendicularidad.

Las ecuaciones de las rectas serán:

r1: y - 3 = m1.(x - 2)

r1: y - 3 = 0.(x - 2)

r1: y - 3 = 0

r1: y = 3 (paralela el eje "x")

r2: y + 3 = (-1/m1).(x + 2)

r2: (y + 3).(-m1) = x + 2

r2: (y + 3).0 = x + 2

r2: 0 = x + 2

r2: x = -2 (paralela el eje "y")

• Los invito a probar con la pendiente inversa (m2).

Gráfica:

Regresar a la guía de ejercicios. TP-01

Artículo: Problema n° 2 de funciones lineales. TP-01

Revisado por:

Modificado:

Si has utilizado el contenido de esta página, por favor, no olvides citar la fuente "Fisicanet ®".

Por favor, "copia y pega" bien el siguiente enlace:

https://www.fisicanet.com.ar/matematica/funciones/resueltos/tp01_funciones_lineales01.php

¡Gracias!

Copyright © 2000-2018 Fisicanet ® Todos los derechos reservados