Problema nº 2 de integrales superficiales de campos vectoriales, flujo saliente a través de un hemisferio

Enunciado del ejercicio nº 2

Calcular el flujo entrante del campo (y, x, z²) a través del hemisferio x² + y² + z² = 1, z ≥ 0

Si:

F = (y, x, z²)

S: x² + y² + z² = 1, z ≥ 0

Desarrollo

Fórmulas:

Cálculo del flujo saliente

Solución

Parametrizando la esfera:

x = (cos θ)·(sen φ)

y = (sen θ)·(sen φ)

z = cos φ

X(θ, φ) = ((cos θ)·(sen φ),(sen θ)·(sen φ), cos φ)

0 ≤ θ ≤ 2·π

0 ≤ φ ≤ π/2

Hallamos el vector normal:

Xθ = (-(sen θ)·(sen φ), (cos θ)·(sen φ), 0)

Xφ = ((cos θ)·(cos φ), (sen θ)·(cos φ), -sen φ)

n = Xθ ∧ Xφ

Cálculo del producto vectorial

n = Xθ ∧ Xφ = [-sen φ·(cos θ)·(sen φ), -(-(sen θ)·(sen φ))·(-sen φ), -(sen θ)·(sen φ)·(sen θ)·(cos φ) - (cos θ)·(sen φ)·cos θ·cos φ]

n = [-(sen² φ)·(cos θ), -(sen θ)·(sen² φ), -(sen² θ)·(sen φ)·(cos φ) - (cos² θ)·(sen φ)·(cos φ)]

n = [-(sen² φ)·(cos θ), -(sen θ)·(sen² φ), -(sen φ)·(cos φ)·(sen² θ + cos² θ)]

n = [-(sen² φ)·(cos θ), -(sen θ)·(sen² φ), -(sen φ)·(cos φ)]

n = [-(sen φ)·(sen φ)·(cos θ), (sen θ)·(sen φ), cos φ]

Para el punto:

(0, 1, 0) ⇒ θ = π/2 y φ ≤ π/2

El vector normal apunta hacia adentro de la esfera:

n = -1·(0, 1, 0)

Como se pide el flujo entrante el vector normal es el buscado.

Parametrizamos el campo:

F(X(θ, φ)) = (sen φ·sen θ, sen φ·cos θ, cos² φ)

Aplicamos la integral:

Cálculo del flujo saliente

Cálculo del flujo saliente

Cálculo del flujo saliente

Integrando entre los límites:

Cálculo del flujo saliente

Resultado, el flujo saliente del campo es:

Flujo = -½·π

Ejemplo, cómo calcular el flujo saliente a través de un hemisferio

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.