Fisicanet ®

Ejemplo, cómo verificar el teorema de Stokes en una superficie

Problema n° 1 de teorema de Stokes

Enunciado del ejercicio n° 1

Verificar el teorema de Stokes si F = (x, y, z) y S es la superficie z = x² + y², z ≤ 1.

Desarrollo

Fórmulas:

∂S F·dC = S rot F·dS

dC = C'(t)·dt

dS = (Xu ∧ Xv)·du·dv

rot F =E1-E2E3
∂/∂x∂/∂y∂/∂z
f1f2f3

Solución

Gráfico del dominio para el cálculo de la superficie
Gráfico del dominio para el cálculo de la superficie

Parametrizamos la superficie S1:

X(u, v) = (u, v, 0), u² + v² ≤ 1

Calculamos n:

Xu = (1, 0, 0)

Xv = (0, 1, 0)

n = Xu ∧ Xv =E1-E2E3
100
010

n = (0, 0, 1)

n apunta hacia z > 0.

Hallamos el rotF:

rot F =E1-E2E3
∂/∂x∂/∂y∂/∂z
xyz
rot F =∂y-∂x, -∂y+∂z,∂x+∂z
∂y∂z∂x∂z∂x∂y

rot F = (1 - 0, -0 + 1, 1 - 0)

rot F = (1, 1, 1)

Planteamos la integral del segundo miembro:

SC rot F·dS = S1 rot F·dS

SC rot F·dS = D (1, 1, 1)·(0, 0, 1)·du·dv

SC rot F·dS = D du·dv

Pasando a sistema de coordenadas polares:

u = r·cos θ
v = r·sen θ
→ |J| = r →0 ≤ r ≤ 1
0 ≤ θ ≤ 2·π

D du·dv = D' r·dr·dθ

= 2·π1r·dr =
  
00
= 2·π·(½·r²)1=
 
0

= 2·π·(½·1² - ½·0²) =

= 2·π·½ = π

Para el primer miembro parametrizamos la frontera de S1, es decir ∂S:

C = (cos t, sen t, 1), 0 ≤ t ≤ 2·π

Preparamos las partes de la integral:

C' = (-sen t, cos t, 0)

F(C(t)) = (1, cos t, sen t)

Planteamos la integral del primer miembro:

∂S F·dC = aF(C(t))·C'(t)·dt =
 
b
= 2·π(1, cos t, sen t)·(-sen t, cos t, 0)·dt =
 
0
= (cos t)2·π+ (½·t + ½·sen t·cos t)2·π=
  
00

= (cos 2·π - cos 0) + [2·π/2 - 0/2 + (sen 2·π·cos 2·π)/2 - (sen 0·cos 0)/2] =

= (1 - 1) + (π - 0 + 0·1/2 - 0·1/2) = π

Verificado

Autor: Ricardo Santiago Netto (Administrador de Fisicanet)

San Martín. Buenos Aires. Argentina.

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.