Fisicanet ®

Contenido: Solución del ejercicio n° 1 de ecuación del plano tangente y de la recta normal a una superficie. Problema resuelto. Ejemplo, cómo hallar la ecuación del plano tangente y de la recta normal a una superficie

Problema n° 1 de integrales

Problema n° 1

Escribir la ecuación del plano tangente y de la recta normal a la superficie:

x = u + v

y = 1/u

z = u·v

En correspondencia a u = 1 y v = 0.

Desarrollo

Fórmulas:

Plano tangente: Z·(Xu·Xv) = X0·(Xu·Xv)

Recta normal: Z = X0 + t·(Xu·Xv)

Solución

La ecuación es:

X = (u + v, 1/u, u·v)

Sus derivadas son:

Xu = (1, -1/u², v)

Xv = (1, 0, u)

En el punto son:

Xu|(1,0) = (1, -1, 0)

Xv|(1,0) = (1, 0, 1)

X|(1,0) = X0 = (1 + 0, 1/1, 1·0) ⇒ X0 = (1, 1, 0)

El producto vectorial es:

Xu·Xv = (1, -1, 0)·(1, 0, 1) =E1-E2E3
1-10
101

Xu·Xv = [-1 - 0, -(1 - 0), 0 - (-1)]

Xu·Xv = (-1, -1, 1)

Plano tangente:

Z·(Xu·Xv) = X0·(Xu·Xv) ⇒ (x, y, z)·(-1, -1, 1) = (1, 1, 0)·(-1, -1, 1)

-x - y + z = - 1 - 1 ⇒ - x - y + z = -2

x + y - z = 2

Recta Normal:

Z = X0 + t·(Xu·Xv)

(x, y, z) = (1, 1, 0) + t·(-1, -1, 1)

This work by Ricardo Santiago Netto is licensed under CC BY-NC-SA 4.0

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.