Fisicanet ®

Cálculo de límite de funciones AP03

Contenido: Límite de una función racional en el infinito. Cálculo de límites de funciones irracionales. ¿Qué es una indeterminación en límites?

Cálculo de límites de funciones (II)

Límite de una función racional en el infinito

Las reglas de cálculo de límites de funciones cuando x → ±∞, son las mismas que las empleadas para límites de sucesiones.

El límite de una función racional cuando x → ±∞, es igual al límite del cociente de los términos de mayor grado del numerador y denominador.

Si:

  P(x)/Q(x) =   (a0 + a1·x + a2·x² + … + an·xn)/(b0 + b1·x + b2·x² + … + bm·xm) =   (an·xn)/(bn·xn)

El valor de este límite depende del valor que tengan n y m:

Ejemplos de cálculo de límites de funciones racionales (x → ∞)

Ejemplo n° 1) Calcular el límite de la función ƒ(x) = (3·x² - 2·x - 5)/(x - 4), cuando x → ∞

Solución

En este caso, el grado del numerador, 2, es mayor que el grado del denominador, 1, por tanto el límite es ∞.

  (3·x² - 2·x - 5)/(x - 4) =   3·x²/x =   3·x/1 = +∞

Ejemplo n° 2) Calcular el límite de la función g(x) = (x³ - 5)/(-x² - 4), cuando x → ∞

Solución

El grado del numerador es mayor que el grado del denominador, y los términos de mayor grado tienen signos distintos, por tanto:

  (x³ - 5)/(-x² - 4) =   x³/(-x²) =  = x/(-1) = -∞

Ejemplo n° 3) Calcular   (-3·x² - 2·x + 5)/(4·x² - 4)

Solución

El grado del numerador es igual que el grado del denominador, por tanto:

  (-3·x² - 2·x + 5)/(4·x² - 4) =   (-3·x²)/(4·x²) = -¾

Ejemplo n° 4) Calcular   (x² - x + 1)/(x³ - 4·x + 3)

Solución

El grado del numerador es menor que el grado del denominador, por tanto:

  (x² - x + 1)/(x³ - 4·x + 3) =   x²/x³ =   1/x = 0

Cálculo de límites de funciones irracionales

Una función es irracional cuando la variable independiente aparece bajo el signo de raíz.

Son funciones irracionales las siguientes:

ƒ(x) = x - 3

g(x) = 3·x - x² + 5

h(x) = x - 1/x + 1

k(x) = x/x

El modo de calcular el límite de una función irracional es análogo al cálculo del límite de una sucesión irracional.

A. Cálculo del límite de una función irracional en un punto x0 finito

Estos límites se resuelven, en general, como si de una función racional se tratara.

En el caso de que, calculando el límite aparezca una indeterminación, ésta suele resolverse multiplicando y dividiendo por el conjugado del numerador o del denominador.

Ejemplos de cálculo de límites de funciones irracionales (x → x0)

Ejemplo n° 1) Calcular   x - 2

Solución

  x - 2 = 2 - 2 = 0

Ejemplo n° 2) Calcular   (x - 1)/(x - 1)

Solución

  (x - 1)/(x - 1) = (1 - 1)/(1 - 1) = 0/0, indeterminación.

Para resolver la indeterminación se multiplica y se divide por el conjugado del numerador, x + 1:

  (x - 1)/(x - 1) =   [(x - 1)·(x + 1)]/[(x - 1)·(x + 1)] =   (x - 1)/[(x - 1)·(x + 1)] =   1/(x + 1) = 1/(1 + 1) = ½

Ejemplo n° 3) Resolver el siguiente límite:   (x - 5)/(x - 5)

Solución

  (x - 5)/(x - 5) = (5 - 5)/(5 - 5) = 0/0, indeterminación.

Para resolver la indeterminación se multiplica y se divide por 5 + 5

  (x - 5)/(x - 5) =   [(x - 5)·(x + 5])/[(x - 5)·(x + 5)] =   (x - 5)/[(x - 5)·(x + 5)] =   1/(x + 5) = 1/(5 + 5) = ½·5

Cálculo del límite de una función irracional en el infinito

B.1. Límites indeterminado de la forma ∞/∞

Cuando al calcular el límite de una función irracional resulta la indeterminación ∞/∞, ésta se resuelve aplicando la regla dada para la misma situación en funciones racionales.

Ejemplos de cálculo de límites indeterminados de la forma ∞/∞

Ejemplo n° 1) Calcular el límite de la función ƒ(x) = (4·x³ - 2)/(x - 3), cuando x → ∞

Solución

  (4·x³ - 2)/(x - 3) = ∞/∞, indeterminación.

Haciendo uso de la regla mencionada, resulta:

Por lo tanto,   (4·x³ - 2)/(x - 3) = ∞

Ejemplo n° 1) Calcular el límite de la función ƒ(x) = Cálculo de límite de funciones, cuando x → ∞

Solución

Calculando el límite del numerador y del denominador se obtiene:

  Cálculo de límite de funciones = ∞/∞, indeterminación.

Estudiando los grados:

Por lo tanto, el límite es:

  Cálculo de límite de funciones = 5/4 = 5/2

3) Calcular   Cálculo de límite de funciones

Solución

  Cálculo de límite de funciones = ∞/∞, indeterminación.

Grado del numerador: 5/2

Grado del denominador: 3

5/2 < 3

Por lo tanto, el límite es:

  Cálculo de límite de funciones = 0

B.2. Límites indeterminado de la forma ∞ - ¥

Cuando al calcular el límite de una función irracional resulta la indeterminación

∞ - ¥ ésta se resuelve generalmente multiplicando y dividiendo la función por su conjugada.

Ejemplos de cálculo de límites indeterminados de la forma ∞ - ¥

Ejemplo n° 1) Calcular el límite de la función y = x² + 3 - x, cuando x → ∞.

Solución

  x² + 3 - x = ∞ - ∞, indeterminación.

Se multiplica y se divide la función por su conjugada, x² + 3 + x

  Cálculo de límite de funciones =   Cálculo de límite de funciones = 3/(1 - 1) = 3/2

Ejemplo n° 2) Calcular el límite de la función y = x - 3 - x + 3, cuando x → ∞.

Solución

  x - 3 - x + 3 = ∞ - ¥, indeterminación.

Se multiplica y se divide la función por su conjugada,

x - 3 + x + 3

  (x - 3 - x + 3)·(x - 3 + x + 3)/(x - 3 + x + 3) =   (x - 3) - (x + 3)/(x - 3 + x + 3) =   -6/(x - 3 + x + 3) = 0

Ejemplo n° 3) Calcular el límite de la función ƒ(x) = x + 1 - x, cuando x → ∞.

Solución

  x + 1 - x = ∞ - ∞, indeterminación.

Se multiplica y se divide la función por su conjugada, x + 1 + x

  (x + 1 - x)·(x + 1 + x)/(x + 1 + x) =   (x + 1 - x²)/(x + 1 + x) = -∞

Autor: Sin datos

Editor: Ricardo Santiago Netto (Administrador de Fisicanet)

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.