Problema n° 2-a de ecuaciones de tercer grado - TP04

Enunciado del ejercicio n° 2-a

¿Para qué valores de "x" la ecuación es igual a cero?

3·x³ = 65·x + 2·x²

Desarrollo

Fórmulas:

Ecuación de Báscara o Bhaskara:

x1,2 =-b ± b² - 4·a·c
2·a

Solución

3·x³ = 65·x + 2·x²

Igualamos a cero:

3·x³ - 2·x² - 65·x = 0

Extraemos factor común "x":

x·(3·x² - 2·x - 65) = 0

Para que la ecuación sea igual a cero se debe cumplir:

x = 0 ∧ 3·x² - 2·x - 65 = 0

Por lo tanto:

x1 = 0

Luego resolvemos la ecuación cuadrática:

3·x² - 2·x - 65 = 0

Aplicamos la ecuación de Báscara o Bhaskara:

x2,3 =-b ± b² - 4·a·c
2·a

Siendo:

a = 3

b = -2

c = -65

Reemplazamos y resolvemos, obtendremos dos valores:

x2,3 =-(-2) ± (-2)² - 4·3·(-65)
2·3
x2,3 =2 ± 4 + 780
6
x2,3 =2 ± 784
6
x2,3 =2 ± 28
6
x2,3 =1 ± 14
3

Calculamos los valores por separado según el signo del resultado de la raíz:

x2 =1 + 14
3
x2 =15
3

x2 = 5

x3 =1 - 14
3
x3 = -13
3

Resultado, las raíces son:

x1 = 0

x2 = 5

x3 = -13
3

Autor: Ricardo Santiago Netto. Argentina

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.