Problema nº 5-d de funciones lineales, operar con rectas - TP01

Enunciado del ejercicio nº 5-d

Hallar el valor del parámetro "k" de modo tal que la recta de ecuación 2·k·x - 5·y + 2·k + 3 = 0:

Pase por el origen de coordenadas.

Desarrollo

Datos:

r: 2·k·x - 5·y + 2·k + 3 = 0

Solución

Para que se cumpla lo solicitado el punto (0; 0) debe pertenecer a la recta.

Reemplazamos los valores de "x" e "y" en la recta y despejamos "k":

2·k·x - 5·y + 2·k + 3 = 0

2·k·0 - 5·0 + 2·k + 3 = 0

2·k + 3 = 0

2·k = -3

Resultado, el valor del parámetro "k" es:

Cálculo de parámetros en la ecuación de una recta

Ejemplo, cómo operar con rectas

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.