Problema n° 23 de funciones de varias variables - TP02

Enunciado del ejercicio n° 23

Calcular la longitud de la curva:

f(x) = x(t + 1)½·dt; 1 ≤ x ≤ 4
 
1

Desarrollo

Fórmulas:

s = t2||X'(t)||·dt
 
t1
s = b1 + [f'(x)]²·dx
 
a

Solución

Si:

x = t

f'(x) = (x + 1)½

Luego:

s = b1 + [f'(x)]²·dx
 
a
s = 41 + (x + 1·dx
 
1
s = 41 + x + 1·dx
 
1
s = 42 + x·dx
 
1
s = ⅔·(2 + x)³4
 
1

s = ⅔·[(2 + 4)³ - (2 + 1)³]

s = ⅔·[ - ]

s = ⅔·[6·6 - 3·3]

s = ⅔·3·[2·6 - 3]

s = 2·[2·6 - 3]

Autor: Ricardo Santiago Netto. Argentina

Ejemplo, cómo hallar la longitud de una curva aplicando integrales

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.