Problema n° 2 de integrales - TP04

Enunciado del ejercicio n° 2

C x·y·z·ds

Donde:

C = (t², t, 1); 0 ≤ t ≤ 1

Aplicando:

C f(x)·ds = bf(C(t))·||C'||·dt
 
a

Calculando las partes:

f(X) = x·y·z ⇒ f(C(t)) = t²·t·1

f(C(t)) = t³

C(t) = (t², t, 1) ⇒ C'(t) = (2·t, 1, 0)

||C'|| = (2·t)² + 1² + 0²

||C'|| = 4·t² + 1

Armando la integral:

C x·y·z·ds = 1t³·4·t² + 1·dt
 
0

Mediante un cambio de variables:

u² = 4·t² + 1

2·u·du = 8·t·dt ⇒ u·du/4 = t·dt

(u² - 1)/4 = t²

Reemplazando:

C x·y·z·ds = 1t·t²·4·t² + 1·dt = I
 
0
I = 1¼·(u² - 1)··¼·u·du
 
0
I = ¼·¼·1(u² - 1)·u·u·du
 
0
I = (1/16)·1(u² - 1)·u²·du
 
0
I = (1/16)·1(u4 - u²)·du
 
0
I = (1/16)·[⅕·u5 - ⅓·u³]1
 
0

Resolviendo:

I = (1/16)·[⅕·(4·t² + 1)5 - ⅓·(4·t² + 1)³]1
 
0

I = (1/16)·{⅕·[(4·1² + 1)5 - (4·0² + 1)5] - ⅓·[(4·1² + 1)³ - (4·0² + 1)³]}

I = (1/16)·{⅕·[(4 + 1)5 - (1)5] - ⅓·[(4 + 1)³ - (1)³]}

I = (1/16)·{⅕·[(5)5 - (1)5] - ⅓·[(5)³ - (1)³]}

I = (1/16)·[⅕·(25·5 - 1) - ⅓·(5·5 - 1)]

I = (1/16)·(1/15)·[3·(25·5 - 1) - 5·(5·5 - 1)]

I = (1/16)·(1/15)·[(75·5 - 3) - (25·5 - 5)]

I = (1/16)·(1/15)·(75·5 - 3 - 25·5 + 5)

I = (1/16)·(1/15)·(50·5 + 2)

I = ⅛·(1/15)·(50·5 + 2)

Autor: Ricardo Santiago Netto. Argentina

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.