Fisicanet ®

Problema n° 1-b de integrales TP06

Integrales: Solución del ejercicio n° 1-b de aplicaciones del teorema de la divergencia Problema resuelto. Ejemplo, cómo calcular el flujo saliente a través de un hemisferio

Problema n° 1-b de integrales

Problema n° 1

Calcular el flujo saliente del campo:

b.

(y, x, z²) a través de la hemisferio x² + y² + z² = 1, z ≥ 0.

Desarrollo

Fórmulas:

∂T F·dS = T div F·dT

Vol T = ∂T x·E1·dS

Vol T = ∂T y·E1·dS

Vol T = ∂T z·E1·dS

Solución

Hallamos la divergencia del campo:

F = (x, y, z²) ⇒ ∇F = (0 + 0 + 2·z) ⇒ ∇F = 2·z

Planteamos la integral para la página exterior del dominio:

-∂T F·dS = -T div F·dT = -T 2·z·dx·dy·dz = -2·T z·dx·dy·dz

Cambiamos a sistema de coordenadas esféricas:

x = r·(cos θ)·(sen φ)
y = r·(sen θ)·(sen φ)
z = r·cos φ
→ |J| = r²·sen φ →0 ≤ r ≤ 1
0 ≤ θ ≤ 2·π
0 ≤ φ ≤ π/2

Resolvemos:

= -2·T z·dx·dy·dz = -2·T' r·(cos φ)·r²·(sen φ)·dθ·dφ·dr = -2·T' r³·(cos φ)·(sen φ)·dθ·dφ·dr

Cálculo del flujo saliente

= -4·π·¼·½ = -π/2

Resultado, el flujo saliente del campo es:

Flujo = -π/2

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.