Fisicanet ®

Ejemplo, cómo calcular el flujo saliente a través de una esfera

Problema n° 1-c de integrales

Enunciado del ejercicio n° 1-c

Calcular el flujo saliente del campo:

(y, z·x, 1) a través de la esfera (x - a)² + (y - b)² + (z - c)² = ℜ².

Desarrollo

Fórmulas:

∂T F·dS = T div F·dT

Vol T = ∂T x·E1·dS

Vol T = ∂T y·E1·dS

Vol T = ∂T z·E1·dS

Solución

Hallamos la divergencia del campo:

F = (y, z·x, 1) ⇒ ∇F = (0 + 0 + 0)

∇F = 0

Como la divergencia del campo es nula, el flujo del mismo a través de cualquier superficie es nulo.

Flujo = ∂T F·dS =

= T div F·dT = T 0·dx·dy·dz = 0

Resultado, el flujo saliente del campo es:

Flujo = 0

Autor: Ricardo Santiago Netto (Administrador de Fisicanet)

San Martín. Buenos Aires. Argentina.

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.