Problema n° 1-d de integrales, flujo saliente a través de un cono - TP06
Enunciado del ejercicio n° 1-d
Calcular el flujo saliente del campo:
(y - z, z - x, x - y) a través de la superficie cónica z² = x² + y², 0 ≤ z ≤ h.
Desarrollo
Fórmulas:
∬∂T F·dS = ∭T div F·dT
Vol T = ∬∂T x·E₁·dS
Vol T = ∬∂T y·E₁·dS
Vol T = ∬∂T z·E₁·dS
Solución
Hallamos la divergencia del campo:
F = (y - z, z - x, x - y) ⇒ ∇F = (0 + 0 + 0)
∇F = 0
Como la divergencia del campo es nula, el flujo del mismo a través de cualquier superficie es nulo.
Flujo = ∬∂T F·dS =
= ∭T div F·dT = ∭T 0·dx·dy·dz = 0
Resultado, el flujo saliente del campo es:
Flujo = 0
Resolvió: Ricardo Santiago Netto. Argentina
- Anterior |
- Regresar a la guía TP06
- | Siguiente
Ejemplo, cómo calcular el flujo saliente a través de un cono