Fisicanet ®

Ejemplo, cómo calcular los coeficientes de un polinomio

Problema n° 4 de cálculo de los coeficientes de un polinomio - TP11

Enunciado del ejercicio n° 4

Dados:

P(x) = x5 + a·x4 + 3·x² - 8·x + b ∧ Q(x) = x³ - 6·x + 2,

Hallar los números reales "a" y "b" de tal forma que "-1" sea raíz del cociente y del resto de la división de P(x) por Q(x).

Solución

P(x)= C(x) + R(x)
Q(x)

Dividimos:

x5a·x403·x²-8·xbx³ - 6·x + 2
-x506·x³-2·x² x² + a·x + 6
0a·x46·x³
-a·x406·a·x²-2·a·x
06·x³(6·a + 1)·x²(-8 - 2·a)·x
 -6·x³36·x²0-12
0(6·a + 37)·x²(-8 - 2·a)·xb - 12

C(x) = x² + a·x + 6

R(x) = (6·a + 37)·x² + (-8 - 2·a)·x + b - 12

R(x) = (6·a + 37)·x² - 2·(4 + a)·x + b - 12

Si "-1" es raíz de C(x) ⇒ C(-1) = 0

C(-1) = (-1)² + a·(-1) + 6 = 0

1 - a + 6 = 0 ⇒ 7 - a = 0

Despejamos "a":

a = 7

Si "-1" es raíz de R(x) ⇒ R(-1) = 0

R(-1) = (6·a + 37)·(-1)² - 2·(4 + a)·(-1) + b - 12 = 0

(6·a + 37)·1 + 2·(4 + a)·1 + b - 12 = 0

6·a + 37 + 8 + 2·a + b - 12 = 0

8·a + 33 + b = 0

Reemplazamos por el valor hallado de "a":

8·7 + 33 + b = 0

56 + 33 + b = 0 ⇒ 89 + b = 0

Despejamos "b":

b = -89

Queda:

C(x) = x² + 7·x + 6

El polinomio factorizado es:

C(x) = (x + 1)·(x + 6)

R(x) = (6·7 + 37)·x² + (-8 - 2·7)·x + (-89) - 12

R(x) = (42 + 37)·x² + (-8 - 14)·x - 89 - 12

R(x) = 79·x² - 22·x - 101

El polinomio factorizado es:

R(x) = (x + 1)·(x - 1,28)

P(x) = x5 + 7·x4 + 3·x² - 8·x + (-89)

P(x) = x5 + 7·x4 + 3·x² - 8·x - 89

Resultado, los valores de los coeficientes son:

a = 7

b = -89

Autor: Ricardo Santiago Netto (Administrador de Fisicanet)

San Martín. Buenos Aires. Argentina.

Ver condiciones para uso de los contenidos de fisicanet.com.ar

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.