Fisicanet ®

Guía de problemas de funciones logarítmicas TP04

Contenido: Operaciones con logaritmos. Cambio de base. Desigualdades. Logaritmos decimales.

Guía de problemas de funciones logarítmicas

Resolver los siguientes ejercicios

Problema n° 1) ¿Cuál es la expresión S cuyo logaritmo decimal es: log 4 + log π + log r²?

Problema n° 2) Si la suma de los logaritmos de dos números, en base 9, es ½, determinar el producto de esos números.

Problema n° 3) Sabiendo que el log2 (a - b) = m, y (a + b) = 8, obtener el log2 (a² - b²) en función de m.

Problema n° 4) Resolver la ecuación: log2 (x - 3) + log2 (x - 2) = 1.

Problema n° 5) Si la diferencia de logaritmos, en base 4, da dos números x e y, en este orden, es ½, ¿qué relación existe entre x e y?

Problema n° 6) Reducir a logaritmo único: log V = log 4 + log π + log r³ - log 3.

Problema n° 7) Resolver las siguientes ecuaciones:

  1. log2 (x² + 1) - log2 x = 1
  2. log2 (9·x² - 20) - log2 x - log2 6 = 2
  3. log2 (x² + 1) - log2 x = log 2
  4. log4 x - log4 (x - 1) = 1
  5. log4 x - log2 x = 9
  6. log2 x - 3·[log8 (x + 1)]/2 = 2
  7. log2 (x + 1)/(x - 1) = log2 3/2
  8. log4 x = 5/2

Problema n° 8) Aplicar logaritmo a:

S = (1²·3)/4

Problema n° 9) Reducir a logaritmo único:

  1. log S = [log p + log (p - a) + log (p - b) + log (p - c)]/2
  2. log X = 2·[log (a + b) + log (a - b) - 1]/3

Problema n° 10) Cambiar a base 10: x = log2 10

Problema n° 11) Demostrar que (loga b)·(logb a) = 1

Problema n° 12) Resolver las siguientes desigualdades:

  1. log½ (x² - 3/2) ≥ 1
  2. 0 < log2 (2·x - 1) ≤ 1
  3. log½ (x + 2) + log½ (x - 3) > 2

Problema n° 13) Determinar la base de los siguientes logaritmos:

  1. logx 2 = 1/3
  2. logx 5 = 1/3
  3. logx 5 = -1/3
  4. logx 0,25 = 2
  5. logx 16 = -2

Problema n° 14) Hallar por definición:

log2 8

Problema n° 15) Resolver por definición: log2 (x² + 2·x) = 3

Éste sitio web usa cookies, si permanece aquí acepta su uso.

Puede leer más sobre el uso de cookies en nuestra política de privacidad.